Associations between bone attenuation and prevalent vertebral fractures on chest CT scans differ with vertebral fracture locations

J H M Driessen, M J van Dort, E A P M Romme, E F M Wouters, F W J M Smeenk, B van Rietbergen, J P W van den Bergh, P Geusens, J H M Driessen, M J van Dort, E A P M Romme, E F M Wouters, F W J M Smeenk, B van Rietbergen, J P W van den Bergh, P Geusens

Abstract

Vertebral fracture (VF) locations are bimodally distributed in the spine. The association between VF and bone attenuation (BA) measured on chest CT scans varied according to the location of VFs, indicating that other factors than only BA play a role in the bimodal distribution of VFs.

Introduction: Vertebral fractures (VFs) are associated with low bone mineral density but are not equally distributed throughout the spine and occur most commonly at T7-T8 and T11-T12 ("cVFs") and less commonly at T4-T6 and T9-T10 ("lcVF"). We aimed to determine whether associations between bone attenuation (BA) and VFs vary between subjects with cVFs only, with lcVFs only and with both cVFs and lcVFs.

Methods: Chest CT images of T4-T12 in 1237 smokers with and without COPD were analysed for prevalent VFs according to the method described by Genant (11,133 vertebrae). BA (expressed in Hounsfield units) was measured in all non-fractured vertebrae (available for 10,489 vertebrae). Linear regression was used to compare mean BA, and logistic regression was used to estimate the association of BA with prevalent VFs (adjusted for age and sex).

Results: On vertebral level, the proportion of cVFs was significantly higher than of lcVF (5.6% vs 2.0%). Compared to subjects without VFs, BA was 15% lower in subjects with cVFs (p < 0.0001), 25% lower in subjects with lcVFs (p < 0.0001) and lowest in subjects with cVFs and lcVFs (- 32%, p < 0.0001). The highest ORs for presence of VFs per - 1SD BA per vertebra were found in subjects with both cVFs and lcVFs (3.8 to 4.6).

Conclusions: The association between VFs and BA differed according to VF location. ORs increased from subjects with cVFs to subjects with lcVFs and were highest in subjects with cVFs and lcVFs, indicating that other factors than only BA play a role in the bimodal VF distribution.

Trial registration: Clinicaltrials.gov identifier: NCT00292552.

Keywords: Bone attenuation; CT scans; Vertebral fractures.

Conflict of interest statement

J.H.M. Driessen, M.J. van Dort, E.A.P.M. Romme, F.W.J.M. Smeenk and B. van Rietbergen declare that they have no conflict of interest.

E.F.M. Wouters reports board membership at Boehringer, grants and speaker fees from AstraZeneca, grants and speaker fees from GSK, speaker fees from Novartis and speaker fees from Chiesi, outside the submitted work.

J.P.W. van den Bergh reports grants from Eli Lilly, grants from Will Pharma and grants from Amgen, outside the submitted work.

P. Geusens reports grants, speaker fees and advisory board from Amgen, grants from Pfizer, grants from MSD, grants from UCB, grants from Abbott, grants and speaker fees from Lilly, grants from BMS, grants from Novartis, grants from Roche and grants from Will Pharma, outside the submitted work.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Proportion of prevalent VFs (a) and prevalent VFs according to severity (b) at vertebrae T4–T12 on chest CT scans. Abbreviations: VF = vertebral fracture
Fig. 2
Fig. 2
Comparison of total BA between subjects without a VF and subjects with VFs according to the regions of VF locations. Differences between groups were adjusted for age and sex. There was a significant trend in the gradual lower BA from no VFs towards cVFs and lcVFs combined. Abbreviations: BA, bone attenuation; VF, vertebral fracture; cVF, prevalent vertebral fracture at common location (T7–T8, T11–T12); lcVF, prevalent vertebral fracture at less common location (T4–T6, T9–T10)
Fig. 3
Fig. 3
a Mean (with standard error of the mean) local bone attenuation stratified by the presence of vertebral fractures and b mean (with standard error of the mean) local bone attenuation stratified by the presence and location of vertebral fractures. Abbreviations: VF, vertebral fracture; HU, Hounsfield units; cVF, prevalent vertebral fracture at common location (T7–T8, T11–T12); lcVF, prevalent vertebral fracture at less common location (T4–T6, T9–T10)

References

    1. Sambrook P, Cooper C. Osteoporosis. Lancet. 2006;367(9527):2010–2018. doi: 10.1016/S0140-6736(06)68891-0.
    1. Cauley JA, Palermo L, Vogt M, Ensrud KE, Ewing S, Hochberg M, Nevitt MC, Black DM. Prevalent vertebral fractures in black women and white women. J Bone Miner Res. 2008;23(9):1458–1467. doi: 10.1359/jbmr.080411.
    1. van der Klift M, de Laet CEDH, McCloskey EV, Johnell O, Kanis JA, Hofman A, Pols HAP. Risk factors for incident vertebral fractures in men and women: the Rotterdam Study. J Bone Miner Res. 2004;19(7):1172–1180. doi: 10.1359/JBMR.040215.
    1. Bhambhani M, Crisp AJ, Compston JE. Differential involvement of the dorsal and lumbar spine in osteoporosis. Ann Rheum Dis. 1992;51(9):1069–1070. doi: 10.1136/ard.51.9.1069.
    1. Oei L, Koromani F, Rivadeneira F, Zillikens MC, Oei EH. Quantitative imaging methods in osteoporosis. Quant Imaging Med Surg. 2016;6(6):680–698. doi: 10.21037/qims.2016.12.13.
    1. Melton LJ, 3rd, et al. Prevalence and incidence of vertebral deformities. Osteoporos Int. 1993;3(3):113–119. doi: 10.1007/BF01623271.
    1. Nevitt MC, Ross PD, Palermo L, Musliner T, Genant HK, Thompson DE. Association of prevalent vertebral fractures, bone density, and alendronate treatment with incident vertebral fractures: effect of number and spinal location of fractures. The Fracture Intervention Trial Research Group. Bone. 1999;25(5):613–619. doi: 10.1016/S8756-3282(99)00202-1.
    1. Anderson DE, Demissie S, Allaire BT, Bruno AG, Kopperdahl DL, Keaveny TM, Kiel DP, Bouxsein ML. The associations between QCT-based vertebral bone measurements and prevalent vertebral fractures depend on the spinal locations of both bone measurement and fracture. Osteoporos Int. 2014;25(2):559–566. doi: 10.1007/s00198-013-2452-0.
    1. Geusens P, Kendler DL, Fahrleitner-Pammer A, López-Romero P, Marin F. Distribution of prevalent and incident vertebral fractures and their association with bone mineral density in postmenopausal women in the teriparatide versus risedronate VERO Clinical Trial. Calcif Tissue Int. 2020;106(6):646–654. doi: 10.1007/s00223-020-00683-6.
    1. Bruno AG, Burkhart K, Allaire B, Anderson DE, Bouxsein ML. Spinal loading patterns from biomechanical modeling explain the high incidence of vertebral fractures in the thoracolumbar region. J Bone Miner Res. 2017;32(6):1282–1290. doi: 10.1002/jbmr.3113.
    1. Ignasiak D, Rüeger A, Sperr R, Ferguson SJ. Thoracolumbar spine loading associated with kinematics of the young and the elderly during activities of daily living. J Biomech. 2018;70:175–184. doi: 10.1016/j.jbiomech.2017.11.033.
    1. Bachmann KN, Bruno AG, Bredella MA, Schorr M, Lawson EA, Gill CM, Singhal V, Meenaghan E, Gerweck AV, Eddy KT, Ebrahimi S, Koman SL, Greenblatt JM, Keane RJ, Weigel T, Dechant E, Misra M, Klibanski A, Bouxsein ML, Miller KK. Vertebral strength and estimated fracture risk across the BMI spectrum in women. J Bone Miner Res. 2016;31(2):281–288. doi: 10.1002/jbmr.2697.
    1. Myers ER, Wilson SE. Biomechanics of osteoporosis and vertebral fracture. Spine (Phila Pa 1976) 1997;22(24 Suppl):25s–31s. doi: 10.1097/00007632-199712151-00005.
    1. Leucht P, Fischer K, Muhr G, Mueller EJ. Epidemiology of traumatic spine fractures. Injury. 2009;40(2):166–172. doi: 10.1016/j.injury.2008.06.040.
    1. Adams MA, Dolan P. Biomechanics of vertebral compression fractures and clinical application. Arch Orthop Trauma Surg. 2011;131(12):1703–1710. doi: 10.1007/s00402-011-1355-9.
    1. Romme EA, Murchison JT, Phang KF, Jansen FH, Rutten EPA, Wouters EFM, Smeenk FWJM, van Beek EJR, MacNee W. Bone attenuation on routine chest CT correlates with bone mineral density on DXA in patients with COPD. J Bone Miner Res. 2012;27(11):2338–2343. doi: 10.1002/jbmr.1678.
    1. van Dort MJ, Geusens P, Driessen JHM, Romme EAPM, Smeenk FWJM, Wouters EFM, van den Bergh JPW. High imminent vertebral fracture risk in subjects with COPD with a prevalent or incident vertebral fracture. J Bone Miner Res. 2018;33(7):1233–1241. doi: 10.1002/jbmr.3429.
    1. van Dort MJ, et al. Diagnosis of vertebral deformities on chest CT and DXA compared to routine lateral thoracic spine X-ray. Osteoporos Int. 2018;29:1285. doi: 10.1007/s00198-018-4412-1.
    1. Vestbo J, Anderson W, Coxson HO, Crim C, Dawber F, Edwards L, Hagan G, Knobil K, Lomas DA, MacNee W, Silverman EK, Tal-Singer R, ECLIPSE investigators Evaluation of COPD longitudinally to identify predictive surrogate end-points (ECLIPSE) Eur Respir J. 2008;31(4):869–873. doi: 10.1183/09031936.00111707.
    1. Agusti A, et al. Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir Res. 2010;11:122. doi: 10.1186/1465-9921-11-122.
    1. Hurst JR, Vestbo J, Anzueto A, Locantore N, Müllerova H, Tal-Singer R, Miller B, Lomas DA, Agusti A, Macnee W, Calverley P, Rennard S, Wouters EF, Wedzicha JA, Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Investigators Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363(12):1128–1138. doi: 10.1056/NEJMoa0909883.
    1. Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, Stockley RA, Sin DD, Rodriguez-Roisin R. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–365. doi: 10.1164/rccm.201204-0596PP.
    1. Brett A, Miller CG, Hayes CW, Krasnow J, Ozanian T, Abrams K, Block JE, van Kuijk C. Development of a clinical workflow tool to enhance the detection of vertebral fractures: accuracy and precision evaluation. Spine. 2009;34(22):2437–2443. doi: 10.1097/BRS.0b013e3181b2eb69.
    1. van der Velde R, Ozanian T, Dumitrescu B, Haslam J, Staal J, Brett A, van den Bergh J, Geusens P. Performance of statistical models of shape and appearance for semiautomatic segmentations of spinal vertebrae T4-L4 on digitized vertebral fracture assessment images. Spine J. 2015;15(6):1248–1254. doi: 10.1016/j.spinee.2015.02.018.
    1. Genant HK, et al. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137–1148. doi: 10.1002/jbmr.5650080915.
    1. Budoff MJ, Hamirani YS, Gao YL, Ismaeel H, Flores FR, Child J, Carson S, Nee JN, Mao S. Measurement of thoracic bone mineral density with quantitative CT. Radiology. 2010;257(2):434–440. doi: 10.1148/radiol.10100132.
    1. van Dort MJ, et al. Thoracic kyphosis on chest CT scans is associated with incident vertebral fractures in smokers. J Bone Miner Res. 2019;34:859. doi: 10.1002/jbmr.3672.
    1. Keaveny TM, Bouxsein ML. Theoretical implications of the biomechanical fracture threshold. J Bone Miner Res. 2008;23(10):1541–1547. doi: 10.1359/jbmr.080406.
    1. Oei L, Koromani F, Breda SJ, Schousboe JT, Clark EM, van Meurs JBJ, Ikram MA, Waarsing JH, van Rooij FJA, Zillikens MC, Krestin GP, Oei EHG, Rivadeneira F. Osteoporotic vertebral fracture prevalence varies widely between qualitative and quantitative radiological assessment methods: the Rotterdam Study. J Bone Miner Res. 2018;33(4):560–568. doi: 10.1002/jbmr.3220.
    1. Van der Klift M, et al. The incidence of vertebral fractures in men and women: the Rotterdam Study. J Bone Miner Res. 2002;17(6):1051–1056. doi: 10.1359/jbmr.2002.17.6.1051.
    1. Sornay-Rendu E, Cabrera-Bravo JL, Boutroy S, Munoz F, Delmas PD. Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res. 2009;24(4):737–743. doi: 10.1359/jbmr.081223.
    1. Duan Y, Seeman E, Turner CH. The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res. 2001;16(12):2276–2283. doi: 10.1359/jbmr.2001.16.12.2276.
    1. Romagnoli E, Carnevale V, Nofroni I, D’Erasmo E, Paglia F, de Geronimo S, Pepe J, Raejntroph N, Maranghi M, Minisola S. Quality of life in ambulatory postmenopausal women: the impact of reduced bone mineral density and subclinical vertebral fractures. Osteoporos Int. 2004;15(12):975–980. doi: 10.1007/s00198-004-1633-2.
    1. Geusens P, Bours SPG, Wyers CE, van den Bergh JP. Fracture liaison programs. Best Pract Res Clin Rheumatol. 2019;33(2):278–289. doi: 10.1016/j.berh.2019.03.016.
    1. Briggs AM, Wrigley TV, van Dieën JH, Phillips B, Lo SK, Greig AM, Bennell KL. The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo. Eur Spine J. 2006;15(12):1785–1795. doi: 10.1007/s00586-006-0158-0.
    1. Siris ES, Genant HK, Laster AJ, Chen P, Misurski DA, Krege JH. Enhanced prediction of fracture risk combining vertebral fracture status and BMD. Osteoporos Int. 2007;18(6):761–770. doi: 10.1007/s00198-006-0306-8.
    1. da Rocha Lemos Costa TM, et al. Bone mineral density and vertebral fractures and their relationship with pulmonary dysfunction in patients with chronic obstructive pulmonary disease. Osteoporos Int. 2018;29(11):2537–2543. doi: 10.1007/s00198-018-4643-1.
    1. Thorin MH, Wihlborg A, Åkesson K, Gerdhem P. Smoking, smoking cessation, and fracture risk in elderly women followed for 10 years. Osteoporos Int. 2016;27(1):249–255. doi: 10.1007/s00198-015-3290-z.
    1. Biggemann M, Hilweg D, Brinckmann P. Prediction of the compressive strength of vertebral bodies of the lumbar spine by quantitative computed tomography. Skelet Radiol. 1988;17(4):264–269. doi: 10.1007/BF00401809.
    1. Kopperdahl DL, Morgan EF, Keaveny TM. Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone. J Orthop Res. 2002;20(4):801–805. doi: 10.1016/S0736-0266(01)00185-1.
    1. Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33(4):744–750. doi: 10.1016/S8756-3282(03)00210-2.
    1. Jiang G, Luo J, Pollintine P, Dolan P, Adams MA, Eastell R. Vertebral fractures in the elderly may not always be "osteoporotic". Bone. 2010;47(1):111–116. doi: 10.1016/j.bone.2010.03.019.
    1. Engelke K, Libanati C, Fuerst T, Zysset P, Genant HK. Advanced CT based in vivo methods for the assessment of bone density, structure, and strength. Curr Osteoporos Rep. 2013;11(3):246–255. doi: 10.1007/s11914-013-0147-2.

Source: PubMed

3
Suscribir