Retinal capillary rarefaction in patients with untreated mild-moderate hypertension

Agnes J Bosch, Joanna M Harazny, Iris Kistner, Stefanie Friedrich, Joanna Wojtkiewicz, Roland E Schmieder, Agnes J Bosch, Joanna M Harazny, Iris Kistner, Stefanie Friedrich, Joanna Wojtkiewicz, Roland E Schmieder

Abstract

Background: Microvascular rarefaction influences peripheral vascular resistance, perfusion and metabolism by affecting blood pressure and flow pattern. In hypertension microvascular rarefaction has been described in experimental animal studies as well as in capillaroscopy of skin and biopsies of muscle tissue in patients. Retinal circulation mirrors cerebral microcirculation and allows non-invasive investigations. We compared capillary rarefaction of retinal vessels in hypertensive versus normotensive subjects.

Methods: In this study retinal capillary rarefaction in 70 patients with long time (more than 67 month of disease duration) and 64 patients with short time hypertension stage 1 or 2 has been compared to 55 healthy control subjects, who participated in clinical trials in our Clinical Research Center ( www.clinicaltrials.gov : NCT01318395, NCT00627952, NCT00152698, NCT01319344). Retinal vascular parameters have been measured non-invasively and in vivo in perfusion image by scanning laser Doppler flowmetry (Heidelberg Engineering, Germany). Capillary rarefaction was assessed by capillary area (CapA) (in pixel-number) and intercapillary distance (ICD) (in μm). Additionally retinal capillary flow (RCF) was measured.

Results: ICD was greater in the long time hypertensive group compared to healthy individuals (24.2 ± 6.3 μm vs 20.1 ± 4.2 μm, p = 0.001) and compared to short time hypertensive patients (22.2 ± 5.2 μm, p = 0.020). Long time hypertensive patients showed less CapA compared to healthy people (1462 ± 690 vs 1821 ± 652, p = 0.005). Accordingly, RCF was significantly lower in the long time hypertensive group compared to the healthy control group (282 ± 70 AU vs 314 ± 60 AU, p = 0.032). Our data indicate a lower level of retinal capillary density in hypertensive patients, especially in those with long time hypertension.

Conclusion: Patients with hypertension stage 1 or 2 showed retinal capillary rarefaction in comparison to healthy normotensive subjects. Retinal capillary rarefaction was intensified with duration of disease.

Keywords: Capillary density; Capillary rarefaction; Hypertension; Microcirculation; Retina.

Conflict of interest statement

Ethics approval and consent to participate

The study protocol of each trial was approved by the Local Ethics Committee (University of Erlangen-Nürnberg), and the studies were conducted in accordance with the Declaration of Helsinki and the principles of good clinical practice guidelines. Subjects were recruited by advertising in local newspapers in the area of Erlangen-Nürnberg, Germany, and eligible subjects were enrolled consecutively. Written informed consent was obtained before study inclusion.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Correlation of retinal capillary density and wall-to-lumen ratio in hypertensive patients. 1a: Intercapillary distance and wall-to-lumen ratio (r = 0.185, p = 0.033). 1b: Capillary area and wall-to-lumen ratio (r = −0.185, p = 0.035)
Fig. 2
Fig. 2
Correlation of retinal Intercapillary distance and 24 h ambulatory BP. 2a: Intercapillary distance and systolic 24 h ambulatory BP (r = 0.238, p = 0.010). 2b: Intercapillary distance and diastolic 24 h ambulatory BP (r = 0.219, p = 0.018)
Fig. 3
Fig. 3
Correlation of capillary density and duration of hypertension. 3a: Intercapillary distance and duration of hypertension (r = 0.263, p = 0.002). 3a: Capillary area and duration of hypertension (r = −0.243, p = 0.006)
Fig. 4
Fig. 4
Correlation of capillary density and HDL. 4a: Intercapillary distance and HDL-cholesterol (r = −0.174, p = 0.018). 4b: Capillary area and HDL-cholesterol (r = 0.136, p = 0.070)

References

    1. Antonios TF. Microvascular rarefaction in hypertension--reversal or over-correction by treatment? Am J Hypertens. 2006;19:484–485. doi: 10.1016/j.amjhyper.2005.11.010.
    1. Rizzoni D, Porteri E, Boari GE, De Ciuceis C, Sleiman I, Muiesan ML, Castellano M, Miclini M, Agabiti-Rosei E. Prognostic significance of small-artery structure in hypertension. Circulation. 2003;108:2230–2235. doi: 10.1161/01.CIR.0000095031.51492.C5.
    1. Suzuki K, Masawa N, Sakata N, Takatama M. Pathologic evidence of microvascular rarefaction in the brain of renal hypertensive rats. J Stroke Cerebrovasc Dis. 2003;12:8–16. doi: 10.1053/jscd.2003.1.
    1. Paiardi S, Rodella LF, De Ciuceis C, Porteri E, Boari GE, Rezzani R, Rizzardi N, Platto C, Tiberio GA, Giulini SM, Rizzoni D, Agabiti-Rosei E. Immunohistochemical evaluation of microvascular rarefaction in hypertensive humans and in spontaneously hypertensive rats. Clin Hemorheol Microcirc. 2009;42:259–268.
    1. Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Structural skin capillary rarefaction in essential hypertension. Hypertension. 1999;33:998–1001. doi: 10.1161/01.HYP.33.4.998.
    1. Serne EH, Gans RO, ter Maaten JC, Tangelder GJ, Donker AJ, Stehouwer CD. Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction. Hypertension. 2001;38:238–242. doi: 10.1161/01.HYP.38.2.238.
    1. Antonios TF, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Rarefaction of skin capillaries in borderline essential hypertension suggests an early structural abnormality. Hypertension. 1999;34:655–658. doi: 10.1161/01.HYP.34.4.655.
    1. Henrich HA, Romen W, Heimgartner W, Hartung E, Baumer F. Capillary rarefaction characteristic of the skeletal muscle of hypertensive patients. Klin Wochenschr. 1988;66:54–60. doi: 10.1007/BF01713011.
    1. Cheng C, Diamond JJ, Falkner B. Functional capillary rarefaction in mild blood pressure elevation. Clinical and translational science. 2008;1:75–79. doi: 10.1111/j.1752-8062.2008.00016.x.
    1. Debbabi H, Uzan L, Mourad JJ, Safar M, Levy BI, Tibirica E. Increased skin capillary density in treated essential hypertensive patients. Am J Hypertens. 2006;19:477–483. doi: 10.1016/j.amjhyper.2005.10.021.
    1. Clark MG, Barrett EJ, Wallis MG, Vincent MA, Rattigan S. The microvasculature in insulin resistance and type 2 diabetes. Semin Vasc Med. 2002;2:21–31. doi: 10.1055/s-2002-23506.
    1. Goligorsky MS. Microvascular rarefaction: the decline and fall of blood vessels. Organ. 2010;6:1–10.
    1. Schrimpf C, Teebken OE, Wilhelmi M, Duffield JS. The role of pericyte detachment in vascular rarefaction. J Vasc Res. 2014;51:247–258. doi: 10.1159/000365149.
    1. Cheng C, Daskalakis C, Falkner B. Capillary rarefaction in treated and untreated hypertensive subjects. Ther Adv Cardiovasc Dis. 2008;2:79–88. doi: 10.1177/1753944708089696.
    1. Ko SH, Cao W, Liu Z. Hypertension management and microvascular insulin resistance in diabetes. Curr Hypertens Rep. 2010;12:243–251. doi: 10.1007/s11906-010-0114-6.
    1. Estato V, Obadia N, Carvalho-Tavares J, Freitas FS, Reis P, Castro-Faria Neto H, Lessa MA, Tibirica E. Blockade of the renin-angiotensin system improves cerebral microcirculatory perfusion in diabetic hypertensive rats. Microvasc Res. 2013;87:41–49. doi: 10.1016/j.mvr.2013.02.007.
    1. Ritz MF, Fluri F, Engelter ST, Schaeren-Wiemers N, Lyrer PA. Cortical and putamen age-related changes in the microvessel density and astrocyte deficiency in spontaneously hypertensive and stroke-prone spontaneously hypertensive rats. Curr Neurovasc Res. 2009;6:279–287. doi: 10.2174/156720209789630311.
    1. Rizzoni D, Porteri E, Duse S, De Ciuceis C, Rosei CA, La Boria E, Semeraro F, Costagliola C, Sebastiani A, Danzi P, Tiberio GA, Giulini SM, Docchio F, Sansoni G, Sarkar A, Rosei EA. Relationship between media-to-lumen ratio of subcutaneous small arteries and wall-to-lumen ratio of retinal arterioles evaluated noninvasively by scanning laser doppler flowmetry. J Hypertens. 2012;30:1169–1175. doi: 10.1097/HJH.0b013e328352f81d.
    1. Harazny JM, Ritt M, Baleanu D, Ott C, Heckmann J, Schlaich MP, Michelson G, Schmieder RE. Increased wall:lumen ratio of retinal arterioles in male patients with a history of a cerebrovascular event. Hypertension. 2007;50:623–629. doi: 10.1161/HYPERTENSIONAHA.107.090779.
    1. Rizzoni D, Aalkjaer C, De Ciuceis C, Porteri E, Rossini C, Rosei CA, Sarkar A, Rosei EA. How to assess microvascular structure in humans. High blood pressure & cardiovascular prevention : the official journal of the Italian Society of Hypertension. 2011;18:169–177. doi: 10.2165/11593640-000000000-00000.
    1. Jumar A, Harazny JM, Ott C, Friedrich S, Kistner I, Striepe K, Schmieder RE. Retinal capillary rarefaction in patients with type 2 diabetes mellitus. PLoS One. 2016;11:e0162608. doi: 10.1371/journal.pone.0162608.
    1. Jung F, Pindur G, Ohlmann P, Spitzer G, Sternitzky R, Franke RP, Leithauser B, Wolf S, Park JW. Microcirculation in hypertensive patients. Biorheology. 2013;50:241–255.
    1. Jumar A, Ott C, Kistner I, Friedrich S, Michelson G, Harazny JM, Schmieder RE. Early signs of end-organ damage in retinal arterioles in patients with type 2 diabetes compared to hypertensive patients. Microcirculation. 2016;
    1. Michelson G, Welzenbach J, Pal I, Harazny J. Automatic full field analysis of perfusion images gained by scanning laser doppler flowmetry. Br J Ophthalmol. 1998;82:1294–1300. doi: 10.1136/bjo.82.11.1294.
    1. Weber T, Wassertheurer S, Rammer M, Haiden A, Hametner B, Eber B. Wave reflections, assessed with a novel method for pulse wave separation, are associated with end-organ damage and clinical outcomes. Hypertension. 2012;60:534–541. doi: 10.1161/HYPERTENSIONAHA.112.194571.
    1. Weber T, Wassertheurer S, Rammer M, Maurer E, Hametner B, Mayer CC, Kropf J, Eber B. Validation of a brachial cuff-based method for estimating central systolic blood pressure. Hypertension. 2011;58:825–832. doi: 10.1161/HYPERTENSIONAHA.111.176313.
    1. Harazny JM, Raff U, Welzenbach J, Ott C, Ritt M, Lehmann M, Michelson G, Schmieder RE. New software analyses increase the reliability of measurements of retinal arterioles morphology by scanning laser doppler flowmetry in humans. J Hypertens. 2011;29:777–782. doi: 10.1097/HJH.0b013e328343c27a.
    1. Jumar A, Harazny JM, Ott C, Kistner I, Friedrich S, Schmieder RE. Improvement in retinal capillary rarefaction after valsartan treatment in hypertensive patients. J Clin Hypertens. 2016;
    1. Ritt M, Schmieder RE. Wall-to-lumen ratio of retinal arterioles as a tool to assess vascular changes. Hypertension. 2009;54:384–387. doi: 10.1161/HYPERTENSIONAHA.109.133025.
    1. Kreis AJ, Nguyen T, Rogers S, Wang JJ, Harazny J, Michelson G, Farouque HM, Wong TY. Reliability of different image analysis methods for scanning laser doppler flowmetry. Curr Eye Res. 2008;33:493–499. doi: 10.1080/02713680802069149.
    1. Michelson G, Schmauss B, Langhans MJ, Harazny J, Groh MJ. Principle, validity, and reliability of scanning laser doppler flowmetry. J Glaucoma. 1996;5:99–105.
    1. Michelson G, Welzenbach J, Pal I, Harazny J. Functional imaging of the retinal microvasculature by scanning laser doppler flowmetry. Int Ophthalmol. 2001;23:327–335. doi: 10.1023/A:1014402730503.
    1. Muiesan ML, Salvetti M, Rizzoni D, Paini A, Agabiti-Rosei C, Aggiusti C, Agabiti Rosei E. Resistant hypertension and target organ damage. Hypertension research : official journal of the Japanese Society of Hypertension. 2013;36:485–491. doi: 10.1038/hr.2013.30.
    1. Ritt M, Harazny JM, Ott C, Schneider MP, Schlaich MP, Michelson G, Schmieder RE. Wall-to-lumen ratio of retinal arterioles is related with urinary albumin excretion and altered vascular reactivity to infusion of the nitric oxide synthase inhibitor n-monomethyl-l-arginine. J Hypertens. 2009;27:2201–2208. doi: 10.1097/HJH.0b013e32833013fd.
    1. Ritt M, Harazny JM, Ott C, Raff U, Lehmann M, Michelson G, Schmieder RE. Influence of blood flow on arteriolar wall-to-lumen ratio in the human retinal circulation in vivo. Microvasc Res. 2012;83:111–117. doi: 10.1016/j.mvr.2011.10.002.
    1. Ritt M, Harazny JM, Ott C, Schlaich MP, Schneider MP, Michelson G, Schmieder RE. Analysis of retinal arteriolar structure in never-treated patients with essential hypertension. J Hypertens. 2008;26:1427–1434. doi: 10.1097/HJH.0b013e3282ffdc66.
    1. Delles C, Michelson G, Harazny J, Oehmer S, Hilgers KF, Schmieder RE. Impaired endothelial function of the retinal vasculature in hypertensive patients. Stroke. 2004;35:1289–1293. doi: 10.1161/01.STR.0000126597.11534.3b.
    1. Triantafyllou A, Anyfanti P, Pyrpasopoulou A, Triantafyllou G, Aslanidis S, Douma S. Capillary rarefaction as an index for the microvascular assessment of hypertensive patients. Curr Hypertens Rep. 2015;17:33. doi: 10.1007/s11906-015-0543-3.
    1. Sumi M, Sata M, Miura S, Rye KA, Toya N, Kanaoka Y, Yanaga K, Ohki T, Saku K, Nagai R. Reconstituted high-density lipoprotein stimulates differentiation of endothelial progenitor cells and enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol. 2007;27:813–818. doi: 10.1161/01.ATV.0000259299.38843.64.
    1. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of hdl. Circ Res. 2004;95:764–772. doi: 10.1161/01.RES.0000146094.59640.13.
    1. Kjeldsen SE, Lund-Johansen P, Nilsson PM, Mancia G. Unattended blood pressure measurements in the systolic blood pressure intervention trial: implications for entry and achieved blood pressure values compared with other trials. Hypertension. 2016;
    1. Sabino B, Lessa MA, Nascimento AR, Rodrigues CA, Henriques M, Garzoni LR, Levy BI, Tibirica E. Effects of antihypertensive drugs on capillary rarefaction in spontaneously hypertensive rats: Intravital microscopy and histologic analysis. J Cardiovasc Pharmacol. 2008;51:402–409. doi: 10.1097/FJC.0b013e3181673bc5.
    1. Tsioufis C, Dimitriadis K, Katsiki N, Tousoulis D. Microcirculation in hypertension: an update on clinical significance and therapy. Curr Vasc Pharmacol. 2015;13:413–417. doi: 10.2174/1570161113666150206110512.
    1. Aellen J, Dabiri A, Heim A, Liaudet L, Burnier M, Ruiz J, Feihl F, Waeber B. Preserved capillary density of dorsal finger skin in treated hypertensive patients with or without type 2 diabetes. Microcirculation. 2012;19:554–562. doi: 10.1111/j.1549-8719.2012.00188.x.
    1. Kaiser SE, Sanjuliani AF, Estato V, Gomes MB, Tibirica E. Antihypertensive treatment improves microvascular rarefaction and reactivity in low-risk hypertensive individuals. Microcirculation. 2013;20:703–716.
    1. Agabiti-Rosei E. [structural and functional changes of the microcirculation in hypertension: Influence of pharmacological therapy]. Drugs. 2003;63 Spec No 1:19–29.
    1. Battegay EJ, de Miguel LS, Petrimpol M, Humar R. Effects of anti-hypertensive drugs on vessel rarefaction. Curr Opin Pharmacol. 2007;7:151–157. doi: 10.1016/j.coph.2006.09.007.
    1. De Ciuceis C, Salvetti M, Rossini C, Muiesan ML, Paini A, Duse S, La Boria E, Semeraro F, Cancarini A, Rosei CA, Sarkar A, Ruggeri G, Caimi L, Ricotta D, Rizzoni D, Rosei EA. Effect of antihypertensive treatment on microvascular structure, central blood pressure and oxidative stress in patients with mild essential hypertension. J Hypertens. 2014;32:565–574. doi: 10.1097/HJH.0000000000000067.
    1. Antonios TF, Rattray FE, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Maximization of skin capillaries during intravital video-microscopy in essential hypertension: comparison between venous congestion, reactive hyperaemia and core heat load tests. Clin Sci (Lond) 1999;97:523–528. doi: 10.1042/cs0970523.
    1. Koch E, Rosenbaum D, Brolly A, Sahel JA, Chaumet-Riffaud P, Girerd X, Rossant F, Paques M. Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes. J Hypertens. 2014;32:890–898. doi: 10.1097/HJH.0000000000000095.

Source: PubMed

3
Suscribir