Kidney Injury by Variants in the COL4A5 Gene Aggravated by Polymorphisms in Slit Diaphragm Genes Causes Focal Segmental Glomerulosclerosis

Jenny Frese, Matthias Kettwig, Hildegard Zappel, Johannes Hofer, Hermann-Josef Gröne, Mato Nagel, Gere Sunder-Plassmann, Renate Kain, Jörg Neuweiler, Oliver Gross, Jenny Frese, Matthias Kettwig, Hildegard Zappel, Johannes Hofer, Hermann-Josef Gröne, Mato Nagel, Gere Sunder-Plassmann, Renate Kain, Jörg Neuweiler, Oliver Gross

Abstract

Kidney injury due to focal segmental glomerulosclerosis (FSGS) is the most common primary glomerular disorder causing end-stage renal disease. Homozygous mutations in either glomerular basement membrane or slit diaphragm genes cause early renal failure. Heterozygous carriers develop renal symptoms late, if at all. In contrast to mutations in slit diaphragm genes, hetero- or hemizygous mutations in the X-chromosomal COL4A5 Alport gene have not yet been recognized as a major cause of kidney injury by FSGS. We identified cases of FSGS that were unexpectedly diagnosed: In addition to mutations in the X-chromosomal COL4A5 type IV collagen gene, nephrin and podocin polymorphisms aggravated kidney damage, leading to FSGS with ruptures of the basement membrane in a toddler and early renal failure in heterozygous girls. The results of our case series study suggest a synergistic role for genes encoding basement membrane and slit diaphragm proteins as a cause of kidney injury due to FSGS. Our results demonstrate that the molecular genetics of different players in the glomerular filtration barrier can be used to evaluate causes of kidney injury. Given the high frequency of X-chromosomal carriers of Alport genes, the analysis of genes involved in the organization of podocyte architecture, the glomerular basement membrane, and the slit diaphragm will further improve our understanding of the pathogenesis of FSGS and guide prognosis of and therapy for hereditary glomerular kidney diseases.

Keywords: alport syndrome; focal segmental glomerulosclerosis; glomerular basement membrane; kidney injury; modifier gene; nephrin; podocin; slit diaphragm.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(a) Pedigree of case 1. (bf) Nephropathological evaluation of the kidney biopsy of patient II-1. (b,c) Light microscopy showing focal segmental glomerulosclerosis (FSGS) and slight mesangial matrix expansion. (df) Ultrastructural analysis showing gross broadening of the podocyte foot processes; partial loss of the slit diaphragm (black arrow); and splitting, thinning, and ruptures of the glomerular basement membrane (GBM) (arrowhead). (g) The course of disease during ACE-inhibitor therapy: proteinuria constantly decreased (arrow). The diagnostic timescale is indicated by the blue arrows. Magnification: (b,c) 400×, (d) 20,000×, (e) 8000×, (f) 25,000×.
Figure 2
Figure 2
(a) Pedigree of case 2. (b,c) Kidney biopsy of the mother (11 y) revealing partial GBM thinning, splitting, and laminations in the lamina densa, with plump podocyte (P) foot processes. (dg) Kidney biopsy of the daughter (3 y). (d,e) Light microscopy showing relatively normal glomerular and tubulointerstitial structures. Electron microscopy uncovered GBM pathology with splitting and thinning, similar to the mother’s nephropathology. (h) The course of disease without therapy in this X-chromosomal COL4A5 genotype was unexpectedly very similar in the heterozygous girl (III-1) and her hemizygous brother (III-2): proteinuria constantly increased into the nephrotic range. Magnification: (b,c) 10,000×, (d,e) 400×, (f,g) 12,500×.
Figure 3
Figure 3
(a) Pedigree of case 3, with I-1 and family members (II-1, II-2, II-5, II-6, and II-8) living in Poland. Further evaluation was performed on family members living in Vienna (II-3, II-4, II-7, III-7, and III-12). Tx = kidney transplant. (b,c) Kidney biopsy in case II-3. Only a small core of renal tissue could be obtained for light microscopy. This tissue contained only one relatively intact glomerulus and three glomerular scars. The pathology was described as nonspecific and dominated by sclerosis. The glomerulus showed segmental scarring of the capillary loops (open arrowheads) and pronounced periglomerular fibrosis (solid arrowheads). The tubules (T) were dissociated by interstitial fibrosis, and thickening of the tubular basement membranes confirmed advanced atrophy. One small artery (Art) exhibited minimal intimal fibrosis. (d) Proteinuria and albuminuria in family members with and without additional slit diaphragm (SD) polymorphisms. Methenamine silver (b) and PAS staining (c); magnification: 400×.

References

    1. D’Agati V.D., Kaskel F.J., Falk R.J. Focal segmental glomerulosclerosis. N. Engl. J. Med. 2011;365:2398–2411. doi: 10.1056/NEJMra1106556.
    1. Brinkkoetter P.T., Ising C., Benzing T. The role of the podocyte in albumin filtration. Nat. Rev. Nephrol. 2013;9:328–336. doi: 10.1038/nrneph.2013.78.
    1. Hudson B.G., Tryggvason K., Sundaramoorthy M., Neilson E.G. Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N. Engl. J. Med. 2003;348:2543–2556. doi: 10.1056/NEJMra022296.
    1. Kruegel J., Rubel D., Gross O. Alport syndrome—Insights from basic and clinical research. Nat. Rev. Nephrol. 2013;9:170–178. doi: 10.1038/nrneph.2012.259.
    1. Storey H., Savige J., Sivakumar V., Abbs S., Flinter F.A. COL4A3/COL4A4 mutations and features in individuals with autosomal recessive Alport syndrome. J. Am. Soc. Nephrol. 2013;24:1945–1954. doi: 10.1681/ASN.2012100985.
    1. Gubler M.C. Podocyte differentiation and hereditary proteinuria/nephrotic syndromes. J. Am. Soc. Nephrol. 2003;14(Suppl. 1):S22–S26. doi: 10.1097/01.ASN.0000067648.75923.68.
    1. Niaudet P. Genetic forms of nephrotic syndrome. Pediatr. Nephrol. 2004;19:1313–1318. doi: 10.1007/s00467-004-1676-9.
    1. Fogo A.B. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat. Rev. Nephrol. 2015;11:76–87. doi: 10.1038/nrneph.2014.216.
    1. Malone A.F., Phelan P.J., Hall G., Cetincelik U., Homstad A., Alonso A.S., Jiang R., Lindsey T.B., Wu G., Sparks M.A., et al. Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int. 2014;86:1253–1259. doi: 10.1038/ki.2014.305.
    1. Megged O., Stein J., Ben-Meir D., Shulman L.M., Yaniv I., Shalit I., Levy I. BK-virus-associated hemorrhagic cystitis in children after hematopoietic stem cell transplantation. J. Pediatr. Hematol. Oncol. 2011;33:190–193. doi: 10.1097/MPH.0b013e3181fce388.
    1. Kloos R.Q., Boelens J.J., de Jong T.P., Versluys B., Bierings M. Hemorrhagic cystitis in a cohort of pediatric transplantations: Incidence, treatment, outcome, and risk factors. Biol. Blood Marrow Transplant. 2013;19:1263–1266. doi: 10.1016/j.bbmt.2013.05.014.
    1. Gross O., Licht C., Anders H.J., Hoppe B., Beck B., Tönshoff B., Höcker B., Wygoda S., Ehrich J.H., Pape L., et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int. 2012;81:494–501. doi: 10.1038/ki.2011.407.
    1. Gross O., Friede T., Hilgers R., Görlitz A., Gavénis K., Ahmed R., Dürr U. Safety and Efficacy of the ACE-Inhibitor Ramipril in Alport Syndrome: The Double-Blind, Randomized, Placebo-Controlled, Multicenter Phase III EARLY PRO-TECT Alport Trial in Pediatric Patients. ISRN Pediatr. 2012;2012:436046. doi: 10.5402/2012/436046.
    1. Gross O., Netzer K.O., Lambrecht R., Seibold S., Weber M. Meta-analysis of genotype-phenotype correlation in X-linked Alport syndrome: Impact on clinical counselling. Nephrol. Dial. Transplant. 2002;17:1218–1227. doi: 10.1093/ndt/17.7.1218.
    1. Jais J.P., Knebelmann B., Giatras I., De Marchi M., Rizzoni G., Renieri A., Weber M., Gross O., Netzer K.O., Flinter F., et al. X-linked Alport syndrome: Natural history and genotype-phenotype correlations in girls and women belonging to 195 families: A “European Community Alport Syndrome Concerted Action” study. J. Am. Soc. Nephrol. 2003;14:2603–2610. doi: 10.1097/01.ASN.0000090034.71205.74.
    1. Knebelmann B., Breillat C., Forestier L., Arrondel C., Jacassier D., Giatras I., Drouot L., Deschênes G., Grünfeld J.P., Broyer M., et al. Spectrum of mutations in the COL4A5 collagen gene in X-linked Alport syndrome. Am. J. Hum. Genet. 1996;59:1221–1232.
    1. Voskarides K., Arsali M., Athanasiou Y., Elia A., Pierides A., Deltas C. Evidence that NPHS2-R229Q predisposes to proteinuria and renal failure in familial hematuria. Pediatr. Nephrol. 2012;27:675–679. doi: 10.1007/s00467-011-2084-6.
    1. Boycott K.M., Vanstone M.R., Bulman D.E., MacKenzie A.E. Rare-disease genetics in the era of next-generation sequencing: Discovery to translation. Nat. Rev. Genet. 2013;14:681–691. doi: 10.1038/nrg3555.
    1. Morinière V., Dahan K., Hilbert P., Lison M., Lebbah S., Topa A., Bole-Feysot C., Pruvost S., Nitschke P., Plaisier E., et al. Improving Mutation Screening in Familial Hematuric Nephropathies through Next Generation Sequencing. J. Am. Soc. Nephrol. 2014;25:2740–2751. doi: 10.1681/ASN.2013080912.
    1. Gibson J., Gilbert R.D., Bunyan D.J., Angus E.M., Fowler D.J., Ennis S. Exome analysis resolves differential diagnosis of familial kidney disease and uncovers a potential confounding variant. Genet. Res. 2014;28:1–9. doi: 10.1017/S0016672313000220.
    1. Bullich G., Trujillano D., Santín S., Ballarín J., Torra R., Estivill X., Ars E. Targeted next-generation sequencing in steroid-resistant nephrotic syndrome: Mutations in multiple glomerular genes may influence disease severity. Eur. J. Hum. Genet. 2014;23:1192. doi: 10.1038/ejhg.2014.252.
    1. Cravedi P., Kopp J.B., Remuzzi G. Recent progress in the pathophysiology and treatment of FSGS recurrence. Am. J. Transplant. 2013;13:266–274. doi: 10.1111/ajt.12045.
    1. Sachs N., Sonnenberg A. Cell-matrix adhesion of podocytes in physiology and disease. Nat. Rev. Nephrol. 2013;9:200–210. doi: 10.1038/nrneph.2012.291.
    1. Ingelfinger J.R. Blood-pressure control and delay in progression of kidney disease in children. N. Engl. J. Med. 2009;361:1701–1703. doi: 10.1056/NEJMe0908183.
    1. Adam J., Connor T.M., Wood K., Lewis D., Naik R., Gale D.P., Sayer J.A. Genetic testing can resolve diagnostic confusion in Alport syndrome. Clin. Kidney J. 2014;7:197–200. doi: 10.1093/ckj/sft144.
    1. Fidler A.L., Vanacore R.M., Chetyrkin S.V., Pedchenko V.K., Bhave G., Yin V.P., Stothers C.L., Rose K.L., McDonald W.H., Clark T.A., et al. A unique covalent bond in basement membrane is a primordial innovation for tissue evolution. Proc. Natl. Acad. Sci. USA. 2014;111:331–336. doi: 10.1073/pnas.1318499111.
    1. Welsh G.I., Saleem M.A. The podocyte cytoskeleto—Key to a functioning glomerulus in health and disease. Nat. Rev. Nephrol. 2011;8:14–21. doi: 10.1038/nrneph.2011.151.
    1. Tsukaguchi H., Sudhakar A., Le T.C., Nguyen T., Yao J., Schwimmer J.A., Schachter A.D., Poch E., Abreu P.F., Appel G.B., et al. NPHS2 mutations in late-onset focal segmental glomerulosclerosis: R229Q is a common disease-associated allele. J. Clin. Invest. 2002;110:1659–1666. doi: 10.1172/JCI0216242.
    1. Ozaltin F., Ibsirlioglu T., Taskiran E.Z., Baydar D.E., Kaymaz F., Buyukcelik M., Kilic B.D., Balat A., Iatropoulos P., Asan E., et al. Disruption of PTPRO causes childhood-onset nephrotic syndrome. Am. J. Hum. Genet. 2011;89:139–147. doi: 10.1016/j.ajhg.2011.05.026.
    1. Tory K., Menyhárd D.K., Woerner S., Nevo F., Gribouval O., Kerti A., Stráner P., Arrondel C., Huynh Cong E., Tulassay T., et al. Mutation-dependent recessive inheritance of NPHS2-associated steroid-resistant nephrotic syndrome. Nat. Genet. 2014;46:299–304. doi: 10.1038/ng.2898.
    1. Kerti A., Csohány R., Wagner L., Jávorszky E., Maka E., Tory K. NPHS2 homozygous p.R229Q variant: Potential modifier instead of causal effect in focal segmental glomerulosclerosis. Pediatr. Nephrol. 2013;28:2061–2429. doi: 10.1007/s00467-013-2542-4.
    1. Philippe A., Weber S., Esquivel E.L., Houbron C., Hamard G., Ratelade J., Kriz W., Schaefer F., Gubler M.C., Antignac C. A missense mutation in podocin leads to early and severe renal disease in mice. Kidney Int. 2008;73:1038–1047. doi: 10.1038/ki.2008.27.
    1. Tonna S., Wang Y.Y., Wilson D., Rigby L., Tabone T., Cotton R., Savige J. The R229Q mutation in NPHS2 may predispose to proteinuria in thin-basement-membrane nephropathy. Pediatr. Nephrol. 2008;23:2201–2207. doi: 10.1007/s00467-008-0934-7.
    1. Beirowski B., Weber M., Gross O. Chronic renal failure and shortened lifespan in COL4A3+/− mice: An animal model for thin basement membrane nephropathy. J. Am. Soc. Nephrol. 2006;17:1986–1994. doi: 10.1681/ASN.2005101044.
    1. Cosgrove D., Meehan D.T., Grunkemeyer J.A., Kornak J.M., Sayers R., Hunter W.J., Samuelson G.C. Collagen COL4A3 knockout: A mouse model for autosomal Alport syndrome. Genes Dev. 1996;10:2981–2992. doi: 10.1101/gad.10.23.2981.

Source: PubMed

3
Suscribir