A double-blind, 377-subject randomized study identifies Ruminococcus, Coprococcus, Christensenella, and Collinsella as long-term potential key players in the modulation of the gut microbiome of lactose intolerant individuals by galacto-oligosaccharides

M A Azcarate-Peril, J Roach, A Marsh, William D Chey, William J Sandborn, Andrew J Ritter, Dennis A Savaiano, T R Klaenhammer, M A Azcarate-Peril, J Roach, A Marsh, William D Chey, William J Sandborn, Andrew J Ritter, Dennis A Savaiano, T R Klaenhammer

Abstract

Background. Our recent publication (Chey et al., Nutrients 2020) showed that a 30-day administration of pure galacto-oligosaccharides (GOS) significantly reduced symptoms and altered the fecal microbiome in patients with lactose intolerance (LI). Results. In this addendum, we performed an in-depth analysis of the fecal microbiome of the 377 LI patients randomized to one of two GOS doses (Low, 10-15 grams/day or High, 15-20 grams/day), or placebo in a multi-center, double-blinded, placebo-controlled trial. Sequencing of 16S rRNA amplicons was done on GOS or placebo groups at weeks zero (baseline), four (end of treatment), nine, 16 and 22. Taxa impacted by treatment and subsequent dairy consumption included lactose-fermenting species of Bifidobacterium, Lactobacillus, Lactococcus, and Streptococcus. Increased secondary fermentation microorganisms included Coprococcus and Ruminococcus species, Blautia producta, and Methanobrevibacterium. Finally, tertiary fermenters that use acetate to generate butyrate were also increased, including Faecalibacterium prausnitzii, Roseburia faecis, and C. eutactus. Conclusions. Results confirmed and expanded data on GOS microbiome modulation in LI individuals. Microbiome analysis at 16 and 22 weeks after treatment further suggested relatively long-term benefits when individuals continued consumption of dairy products.

Trial registration: ClinicalTrials.gov NCT02673749.

Keywords: Bifidobacterium; GOS; Prebiotics; galacto-oligosaccharides; human lactase; lactose intolerance; microbiome modulation; short chain fatty acids.

Conflict of interest statement

AJR was the Co-Founder, President and Chief Executive Officer of Ritter Pharmaceuticals, Inc. (acquired by Qualigen Therapeutics) from 2007 to 2020.

Figures

Figure 1.
Figure 1.
(a) Phylum composition of the gut microbiome of individuals that received either placebo or GOS treatments (Low or High GOS). The most abundant taxa are indicated , . (b) Faith Phylogenetic Diversity (PD) averages between treatments and (c) between treatments at different times. (d) Pairwise PERMANOVA comparisons between Unifrac Unweighted distances by treatment and times. *Corrected p (q)<0.05
Figure 1.
Figure 1.
(a) Phylum composition of the gut microbiome of individuals that received either placebo or GOS treatments (Low or High GOS). The most abundant taxa are indicated , . (b) Faith Phylogenetic Diversity (PD) averages between treatments and (c) between treatments at different times. (d) Pairwise PERMANOVA comparisons between Unifrac Unweighted distances by treatment and times. *Corrected p (q)<0.05
Figure 2.
Figure 2.
(a) Representation of taxa at genus level differentially represented in at least one group and one time point (FDR corrected Kruskal-Wallis P <.05). The heatmap was generated using log2-transformed data in the Heat Map with Dendrogram app within OriginPro 9.7.5.184. (b) Relative abundance by treatment of Coprococcus catus, Bifidobacterium, Faecalibacterium prausnitzii and Methanobrevibacterium over time (in weeks). *Kruskall-Wallis FDR-corrected p < .05
Figure 2.
Figure 2.
(a) Representation of taxa at genus level differentially represented in at least one group and one time point (FDR corrected Kruskal-Wallis P <.05). The heatmap was generated using log2-transformed data in the Heat Map with Dendrogram app within OriginPro 9.7.5.184. (b) Relative abundance by treatment of Coprococcus catus, Bifidobacterium, Faecalibacterium prausnitzii and Methanobrevibacterium over time (in weeks). *Kruskall-Wallis FDR-corrected p < .05
Figure 3.
Figure 3.
(a) Abundance of the phylum Actinobacteria, family Bifidobacteriaceae, and genus Bifidobacterium determined by high-throughput (HT) qPCR by treatment and time at weeks 0 (baseline), 4 (end of GOS treatment), and 9 (end of trial, lactose challenge). (b) Heat map showing abundance of Bifidobacterium species by treatment and time. (c) Abundance of Lactobacillus casei determined by HT qPCR. *p < .05
Figure 3.
Figure 3.
(a) Abundance of the phylum Actinobacteria, family Bifidobacteriaceae, and genus Bifidobacterium determined by high-throughput (HT) qPCR by treatment and time at weeks 0 (baseline), 4 (end of GOS treatment), and 9 (end of trial, lactose challenge). (b) Heat map showing abundance of Bifidobacterium species by treatment and time. (c) Abundance of Lactobacillus casei determined by HT qPCR. *p < .05
Figure 4.
Figure 4.
Analysis of alpha diversity (Faith Phylogenetic Diversity values) by (a) age, (b) age by treatment, and (c) age by treatment and time. H and p values from Kruskall-Wallis analysis indicating the impact significance of the factor considered on diversity are denoted the bottom of each figure. (d) Adonis (PERMANOVA) R2 values representing effect size of patients’ characteristics and treatment on microbiome composition
Figure 4.
Figure 4.
Analysis of alpha diversity (Faith Phylogenetic Diversity values) by (a) age, (b) age by treatment, and (c) age by treatment and time. H and p values from Kruskall-Wallis analysis indicating the impact significance of the factor considered on diversity are denoted the bottom of each figure. (d) Adonis (PERMANOVA) R2 values representing effect size of patients’ characteristics and treatment on microbiome composition
Figure 5.
Figure 5.
Predicted functionality of the GOS-enhanced microbiota. (a) The cellobiose and glutamate bacterial transporters were overrepresented in the prebiotic group. (b) Pathway KO00511 (Other glycan degradation), with genes overrepresented in the GOS group in the N-glycan biosynthesis pathway. (c) Genes responsible for initiation of fatty acid biosynthesis overrepresented in the GOS groups. (d) Summary of the gut metabolic processes and potentially responsible microorganisms that participate in biotransformation of GOS. Blue boxes indicate organisms known to carry out the enzymatic process, while green boxes are potential new players in the intestinal cross feeding of GOS. Depiction was based on our results and published research studies.
Figure 5.
Figure 5.
Predicted functionality of the GOS-enhanced microbiota. (a) The cellobiose and glutamate bacterial transporters were overrepresented in the prebiotic group. (b) Pathway KO00511 (Other glycan degradation), with genes overrepresented in the GOS group in the N-glycan biosynthesis pathway. (c) Genes responsible for initiation of fatty acid biosynthesis overrepresented in the GOS groups. (d) Summary of the gut metabolic processes and potentially responsible microorganisms that participate in biotransformation of GOS. Blue boxes indicate organisms known to carry out the enzymatic process, while green boxes are potential new players in the intestinal cross feeding of GOS. Depiction was based on our results and published research studies.

References

    1. Grand RJ, Montgomery RK, Chitkara DK, Hirschhorn JN.. Changing genes; losing lactase. Gut. 2003;52(5):617–14. doi:10.1136/gut.52.5.617.
    1. Shaukat A, Levitt MD, Taylor BC, MacDonald R, Shamliyan TA, Kane RL, Wilt TJ. Systematic review: effective management strategies for lactose intolerance. Ann Intern Med. 2010;152(12):797–803. doi:10.7326/0003-4819-152-12-201006150-00241.
    1. Scrimshaw NS, Murray EB. The acceptability of milk and milk products in populations with a high prevalence of lactose intolerance. Am J Clin Nutr. 1988;48(4 Suppl):1079–1159. doi:10.1093/ajcn/48.4.1142.
    1. Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, Spector TD, Keinan A, Ley RE, Gevers D, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16(1):191. doi:10.1186/s13059-015-0759-1.
    1. Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, Spector TD, Bell JT, Clark AG, Ley RE. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe. 2016;19(5):731–743. doi:10.1016/j.chom.2016.04.017.
    1. Krumbeck JA, Rasmussen HE, Hutkins RW, Clarke J, Shawron K, Keshavarzian A, Walter J. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome. 2018;6(1):121. doi:10.1186/s40168-018-0494-4.
    1. Bakker-Zierikzee AM, Alles MS, Knol J, Kok FJ, Tolboom JJ, Bindels JG. Effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life. Br J Nutr. 2005;94(5):783–790. doi:10.1079/BJN20051451.
    1. Bouhnik Y, Flourie B, D’Agay-Abensour L, Pochart P, Gramet G, Durand M, Rambaud JC. Administration of transgalacto-oligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. J Nutr. 1997;127(3):444–448. doi:10.1093/jn/127.3.444.
    1. Rowland IR, Tanaka R. The effects of transgalactosylated oligosaccharides on gut flora metabolism in rats associated with a human faecal microflora. The Journal of Applied Bacteriology. 1993;74(6):667–674. doi:10.1111/j.1365-2672.1993.tb05201.x.
    1. Savaiano DA, Ritter AJ, Klaenhammer TR, James GM, Longcore AT, Chandler JR, Walker WA, Foyt HL. Improving lactose digestion and symptoms of lactose intolerance with a novel galacto-oligosaccharide (RP-G28): a randomized, double-blind clinical trial. Nutr J. 2013;12(1):160. doi:10.1186/1475-2891-12-160.
    1. Azcarate-Peril MA, Ritter AJ, Savaiano D, Monteagudo-Mera A, Anderson C, Magness ST, Klaenhammer TR. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc Natl Acad Sci U S A. 2017;114(3):E367–E375. doi:10.1073/pnas.1606722113.
    1. Chey WD, Sandborn WJ, Ritter AJ, Foyt H, Azcarate-Peril MA, Savaiano DA. Galacto-oligosaccharide RP-G28 improves multiple clinical outcomes in lactose-intolerant patients. Nutrients. 2020;12(4):1058. doi:10.3390/nu12041058.
    1. Bokulich NA, Dillon MR, Zhang Y, Rideout JR, Bolyen E, Li H, Albert PS, Caporaso JG, Arumugam M. q2-longitudinal: Longitudinal and paired-sample analyses of microbiome data. mSystems. 2018;3(6). doi:10.1128/mSystems.00219-18.
    1. Mandal S, Van Treuren W, White RA, Eggesbo M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015;26:27663.
    1. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1–8. doi:10.1111/j.1574-6968.2009.01514.x.
    1. Monteagudo-Mera A, Arthur J, Jobin C, Keku T, Bruno-Barcena JM, Azcarate-Peril MA. High purity galacto-oligosaccharides enhance specific Bifidobacterium species and their metabolic activity in the mouse gut microbiome. Beneficial Microbes. 2016;7(2):247–264. doi:10.3920/BM2015.0114.
    1. Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012;6(8):1535–1543. doi:10.1038/ismej.2012.4.
    1. Crost EH, Le Gall G, Laverde-Gomez JA, Mukhopadhya I, Flint HJ, Juge N. Mechanistic insights into the cross-feeding of ruminococcus gnavus and ruminococcus bromii on host and dietary carbohydrates. Front Microbiol. 2018;9:2558. doi:10.3389/fmicb.2018.02558.
    1. Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C, Schmidt TM, Blaser MJ. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio. 2019;10(1). doi:10.1128/mBio.02566-18.
    1. Taras D, Simmering R, Collins MD, Lawson PA, Blaut M. Reclassification of eubacterium formicigenerans Holdeman and Moore 1974 as dorea formicigenerans gen. nov., comb. nov., and description of dorea longicatena sp. nov., isolated from human faeces. Int J Syst Evol Microbiol. 2002;52:423–428.
    1. Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Applied and Environmental Microbiology. 2006;72(5):3593–3599. doi:10.1128/AEM.72.5.3593-3599.2006.
    1. Azcarate Peril MA, Savaiano DA, Ritter AJ, Klaenhammer T. Microbiome alterations of lactose intolerant individuals in response to dietary intervention with galacto-oligosaccharides may help negate symptoms of lactose intolerance. Gastroenterology. 2013;144(5):S–893. doi:10.1016/S0016-5085(13)63323-5.
    1. Davis LM, Martinez I, Walter J, Goin C, Hutkins RW, Tan P. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS One. 2011;6(9):e25200. doi:10.1371/journal.pone.0025200.
    1. Monteagudo-Mera A, Arthur JC, Jobin C, Keku TO, Bruno Barcena JM, Azcarate-Peril MA. High purity galacto-oligosaccharides enhance specific Bifidobacterium species and their metabolic activity in the mouse gut microbiome. Benef Microbes. 2016;3:1–18.
    1. Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc. 2015;74(1):13–22. doi:10.1017/S0029665114001463.
    1. Kageyama A, Benno Y. Emendation of genus collinsella and proposal of collinsella stercoris sp. nov. and collinsella intestinalis sp. nov. Int J Syst Evol Microbiol. 2000;50(Pt 5):1767–1774. doi:10.1099/00207713-50-5-1767.
    1. Qin P, Zou Y, Dai Y, Luo G, Zhang X, Xiao L. Characterization a novel butyric acid-producing bacterium collinsella aerofaciens subsp. shenzhenensis subsp. nov. Microorganisms. 2019;7(3):78. doi:10.3390/microorganisms7030078.
    1. Alessi AM, Gray V, Farquharson FM, Flores-Lopez A, Shaw S, Stead D, Wegmann U, Shearman C, Gasson M, Collie-Duguid ESR, et al. β-Glucan is a major growth substrate for human gut bacteria related to coprococcus eutactus. Environ Microbiol. 2020;22(6):2150–2164. doi:10.1111/1462-2920.14977.
    1. Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014;8(6):1323–1335. doi:10.1038/ismej.2014.14.
    1. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TM, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes. 2014;4(6):e121. doi:10.1038/nutd.2014.23.
    1. Pingitore A, Chambers ES, Hill T, Maldonado IR, Liu B, Bewick G, Morrison DJ, Preston T, Wallis GA, Tedford C, et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab. 2017;19(2):257–265. doi:10.1111/dom.12811.
    1. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364–371. doi:10.2337/db11-1019.
    1. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, MacDougall K, Preston T, Tedford C, Finlayson GS, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744–1754. doi:10.1136/gutjnl-2014-307913.
    1. Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA, Hanyaloglu AC, Ghatei MA, Bloom SR, Frost G. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes (Lond). 2015;39(3):424–429. doi:10.1038/ijo.2014.153.
    1. Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, Kerr C, Hourihane J, Murray D, Fuligni F, et al. Diversity of bifidobacteria within the infant gut microbiota. PLoS One. 2012;7(5):e36957. doi:10.1371/journal.pone.0036957.
    1. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5(4):1417–1435. doi:10.3390/nu5041417.
    1. Mills S, Stanton C, Lane JA, Smith GJ, Ross RP. Precision nutrition and the microbiome, part i: current state of the science. Nutrients. 2019;11(4):923. doi:10.3390/nu11040923.
    1. Azcarate-Peril MA, Sikes M, Bruno-Barcena JM. The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol. 2011;301(3):G401–424. doi:10.1152/ajpgi.00110.2011.
    1. Liu M, Prakash C, Nauta A, Siezen RJ, Francke C. Computational analysis of cysteine and methionine metabolism and its regulation in dairy starter and related bacteria. J Bacteriol. 2012;194(13):3522–3533. doi:10.1128/JB.06816-11.
    1. Centanni M, Ferguson SA, Sims IM, Biswas A, Tannock GW. Bifidobacterium bifidum ATCC 15696 and Bifidobacterium breve 24b metabolic interaction based on 2ʹ-O-fucosyl-lactose studied in steady-state cultures in a freter-style chemostat. Appl Environ Microbiol. 2019;85(7). doi:10.1128/AEM.02783-18.
    1. Lawley B, Sims IM, Tannock GW. Whole-transcriptome shotgun sequencing (RNA-seq) screen reveals upregulation of cellobiose and motility operons of Lactobacillus ruminis L5 during growth on tetrasaccharides derived from barley beta-glucan. Appl Environ Microbiol. 2013;79(18):5661–5669. doi:10.1128/AEM.01887-13.
    1. Andersen JM, Barrangou R, Abou Hachem M, Lahtinen S, Goh YJ, Svensson B, Klaenhammer TR. Transcriptional and functional analysis of galactooligosaccharide uptake by lacS in Lactobacillus acidophilus. Proc Natl Acad Sci U S A. 2011;108(43):17785–17790. doi:10.1073/pnas.1114152108.
    1. Zhao L, Huang Y, Lu L, Yang W, Huang T, Lin Z, Lin C, Kwan H, Wong HLX, Chen Y, et al. Saturated long-chain fatty acid-producing bacteria contribute to enhanced colonic motility in rats. Microbiome. 2018;6(1):107. doi:10.1186/s40168-018-0492-6.
    1. Yao J, Rock CO. Bacterial fatty acid metabolism in modern antibiotic discovery. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(11):1300–1309. doi:10.1016/j.bbalip.2016.09.014.
    1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal. 2012;6(8):1621–1624. doi:10.1038/ismej.2012.8.
    1. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112–5120. doi:10.1128/AEM.01043-13.
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–336. doi:10.1038/nmeth.f.303.
    1. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–857. doi:10.1038/s41587-019-0209-9.
    1. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228–8235. doi:10.1128/AEM.71.12.8228-8235.2005.
    1. Lozupone C, Hamady M, Knight R. UniFrac--an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics. 2006;7(1):371. doi:10.1186/1471-2105-7-371.
    1. Junick J, Blaut M. Quantification of human fecal bifidobacterium species by use of quantitative real-time PCR analysis targeting the groEL gene. Appl Environ Microbiol. 2012;78(8):2613–2622. doi:10.1128/AEM.07749-11.
    1. Matsuki T, Watanabe K, Fujimoto J, Kado Y, Takada T, Matsumoto K, Tanaka R. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol. 2004;70(1):167–173. doi:10.1128/AEM.70.1.167-173.2004.
    1. Hermann-Bank ML, Skovgaard K, Stockmarr A, Larsen N, Molbak L. The gut microbiotassay: a high-throughput qPCR approach combinable with next generation sequencing to study gut microbial diversity. BMC Genomics. 2013;14(1):788. doi:10.1186/1471-2164-14-788.
    1. Kwon H-S, Yang E-H, Lee S-H, Yeon S-W, Kang B-H, Kim T-Y. Rapid identification of potentially probiotic Bifidobacterium species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23 S rRNA. FEMS Microbiology Letters. 2006;250(1):55–62. doi:10.1016/j.femsle.2005.06.041.
    1. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108. doi:10.1038/nprot.2008.73.
    1. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol. 2012;8(6):e1002358. doi:10.1371/journal.pcbi.1002358.

Source: PubMed

3
Suscribir