Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes

Jin-Kui Yang, Shan-Shan Lin, Xiu-Juan Ji, Li-Min Guo, Jin-Kui Yang, Shan-Shan Lin, Xiu-Juan Ji, Li-Min Guo

Abstract

Multiple organ damage in severe acute respiratory syndrome (SARS) patients is common; however, the pathogenesis remains controversial. This study was to determine whether the damage was correlated with expression of the SARS coronavirus receptor, angiotensin converting enzyme 2 (ACE2), in different organs, especially in the endocrine tissues of the pancreas, and to elucidate the pathogenesis of glucose intolerance in SARS patients. The effect of clinical variables on survival was estimated in 135 SARS patients who died, 385 hospitalized SARS patients who survived, and 19 patients with non-SARS pneumonia. A total of 39 SARS patients who had no previous diabetes and received no steroid treatment were compared to 39 matched healthy siblings during a 3-year follow-up period. The pattern of SARS coronavirus receptor-ACE2 proteins in different human organs was also studied. Significant elevations in oxygen saturation, serum creatinine, lactate dehydrogenase, creatine kinase MB isoenzyme, and fasting plasma glucose (FPG), but not in alanine transaminase were predictors for death. Abundant ACE2 immunostaining was found in lung, kidney, heart, and islets of pancreas, but not in hepatocytes. Twenty of the 39 followed-up patients were diabetic during hospitalization. After 3 years, only two of these patients had diabetes. Compared with their non-SARS siblings, these patients exhibited no significant differences in FPG, postprandial glucose (PPG), and insulin levels. The organ involvements of SARS correlated with organ expression of ACE2. The localization of ACE2 expression in the endocrine part of the pancreas suggests that SARS coronavirus enters islets using ACE2 as its receptor and damages islets causing acute diabetes.

Figures

Fig. 1
Fig. 1
a Probability of event free (no death) survival among SARS patients divided into two groups [yes (red line) and no (green line)] for old age (≥60 years), male gender, anemia (Hb <10 for men and <9 for women), thrombocytopenia (<80 × 109 per l), low level of CD4 (<200) or CD8 (<150) lymphocytes, clinically significant elevation of ALT (≥80 IU/l), AST (≥80 IU/l), LDH (≥250 IU/l), s-Cr (≥106 μmol/l for men and ≥97 μmol/l for women), hypoxia (SaO2 <93%), and hyperglycemia (FPG ≥7.0 mmol/l). b Multivariate baseline predictors of death including old age (≥60 years), elevated ALT (≥80 IU/l), elevated LDH (≥250 IU/l) and hyperglycemia (FPG ≥7.0 mmol/l) among the SARS patients, presented by hazard ratio and 95% CI
Fig. 2
Fig. 2
Immunohistochemically specific pattern of staining for SARS-CoV receptor protein in different organs. Serial sections of the pancreas. a Hematoxylin-eosin (HE) stain shows the exocrine tissue of pancreas (red) with a pancreatic islet (in the middle). b Negative immunostaining control shows no non-specific staining especially caused by endogenous biotin. c Expression of ACE2 in pancreas as assessed by immunohistochemistry shows endocrine tissue is strongly positive compared with exocrine tissue. d Lung: marked ACE2 immunostaining was found in type I and type II alveolar epithelial cells, and capillary endothelium. e Kidney: ACE2 was very weakly present in glomerular visceral and parietal epithelium, but strongly present in the brush border and cytoplasm of proximal tubular cells, and in the cytoplasm of distal tubules and collecting ducts. f Heart: ACE2 was present in the myocytes, myocardium, border zone, endothelium of small-to-large arteries as well as sporadically within the smooth muscle of these vessels. g Liver: Küpffer cells, hepatocytes, and the endothelium of sinusoids were negative
Fig. 3
Fig. 3
Changes in FPG levels during the clinical course of SARS during follow-up. Non-SARS: FPG level in patients initially suspected of having SARS but later diagnosed with non-SARS pneumonia; SARS-0: the initial FPG level in SARS patients within 3 days after hospitalization; SARS-2: the initial FPG level after 2 weeks of hospitalization; SARS-D: the final FPG level before discharge; SARS-P: the FPG level from the follow-up study; Controls: the FPG level in the healthy siblings of SARS patients. **P < 0.01 versus non-SARS patients. ††P < 0.01 versus controls

References

    1. Yang JK, Feng Y, Yuan MY, Yuan SY, Fu HJ, Wu BY, Sun GZ, Yang GR, Zhang XL, Wang L, Xu X, Xu XP, Chan JC. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med. 2006;23:623–628. doi: 10.1111/j.1464-5491.2006.01861.x.
    1. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87:E1–E9.
    1. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275:33238–33243. doi: 10.1074/jbc.M002615200.
    1. Turner AJ, Hiscox JA, Hooper NM. ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol Sci. 2004;25:291–294. doi: 10.1016/j.tips.2004.04.001.
    1. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454. doi: 10.1038/nature02145.
    1. Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, Dwosh HA, Walmsley SL, Mazzulli T, Avendano M, Derkach P, Ephtimios IE, Kitai I, Mederski BD, Shadowitz SB, Gold WL, Hawryluck LA, Rea E, Chenkin JS, Cescon DW, Poutanen SM, Detsky AS. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA. 2003;289:2801–2809. doi: 10.1001/jama.289.21.JOC30885.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883.
    1. Dean RG, Burrell LM. ACE2 and diabetic complications. Curr Pharm Des. 2007;13:2730–2735. doi: 10.2174/138161207781662876.
    1. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–637. doi: 10.1002/path.1570.
    1. Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532:107–110. doi: 10.1016/S0014-5793(02)03640-2.
    1. Lang ZW, Zhang LJ, Zhang SJ, Meng X, Li JQ, Song CZ, Sun L, Zhou YS, Dwyer DE. A clinicopathological study of three cases of severe acute respiratory syndrome (SARS) Pathology. 2003;35:526–531. doi: 10.1080/00313020310001619118.
    1. Lang Z, Zhang L, Zhang S, Meng X, Li J, Song C, Sun L, Zhou Y. Pathological study on severe acute respiratory syndrome. Chin Med J (Engl) 2003;116:976–980.
    1. Ding Y, Wang H, Shen H, Li Z, Geng J, Han H, Cai J, Li X, Kang W, Weng D, Lu Y, Wu D, He L, Yao K. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol. 2003;200:282–289. doi: 10.1002/path.1440.
    1. Shi X, Gong E, Gao D, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, Wu B, Fang W, Liao S, Wang S, Xie Z, Lu M, Hou L, Zhong H, Shao H, Li N, Liu C, Pei F, Yang J, Wang Y, Han Z, Shi X, Zhang Q, You J, Zhu X, Gu J. Severe acute respiratory syndrome associated coronavirus is detected in intestinal tissues of fatal cases. Am J Gastroenterol. 2005;100:169–176. doi: 10.1111/j.1572-0241.2005.40377.x.
    1. Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, Wang H, Shen H, Qiu L, Li Z, Geng J, Cai J, Han H, Li X, Kang W, Weng D, Liang P, Jiang S. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203:622–630. doi: 10.1002/path.1560.
    1. Paizis G, Tikellis C, Cooper ME, Schembri JM, Lew RA, Smith AI, Shaw T, Warner FJ, Zuilli A, Burrell LM, Angus PW. Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2. Gut. 2005;54:1790–1796. doi: 10.1136/gut.2004.062398.
    1. Jaeckel E, Manns M, Von Herrath M. Viruses and diabetes. Ann NY Acad Sci. 2002;958:7–25. doi: 10.1111/j.1749-6632.2002.tb02943.x.
    1. Roivainen M, Rasilainen S, Ylipaasto P, Nissinen R, Ustinov J, Bouwens L, Eizirik DL, Hovi T, Otonkoski T. Mechanisms of coxsackievirus-induced damage to human pancreatic beta-cells. J Clin Endocrinol Metab. 2000;85:432–440. doi: 10.1210/jc.85.1.432.
    1. Jali MV, Shankar PS. Transient diabetes following chicken pox. J Assoc Physicians India. 1990;38:663–664.

Source: PubMed

3
Suscribir