Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine

Martin Rodríguez-Vázquez, Brenda Vega-Ruiz, Rodrigo Ramos-Zúñiga, Daniel Alexander Saldaña-Koppel, Luis Fernando Quiñones-Olvera, Martin Rodríguez-Vázquez, Brenda Vega-Ruiz, Rodrigo Ramos-Zúñiga, Daniel Alexander Saldaña-Koppel, Luis Fernando Quiñones-Olvera

Abstract

Tissue engineering is an important therapeutic strategy to be used in regenerative medicine in the present and in the future. Functional biomaterials research is focused on the development and improvement of scaffolding, which can be used to repair or regenerate an organ or tissue. Scaffolds are one of the crucial factors for tissue engineering. Scaffolds consisting of natural polymers have recently been developed more quickly and have gained more popularity. These include chitosan, a copolymer derived from the alkaline deacetylation of chitin. Expectations for use of these scaffolds are increasing as the knowledge regarding their chemical and biological properties expands, and new biomedical applications are investigated. Due to their different biological properties such as being biocompatible, biodegradable, and bioactive, they have given the pattern for use in tissue engineering for repair and/or regeneration of different tissues including skin, bone, cartilage, nerves, liver, and muscle. In this review, we focus on the intrinsic properties offered by chitosan and its use in tissue engineering, considering it as a promising alternative for regenerative medicine as a bioactive polymer.

Figures

Figure 1
Figure 1
Chemical structure of chitosan [poly-(β-1/4)-2-amino-2-deoxy-D-glucopyranose].
Figure 2
Figure 2
Macroscopic photographs (a) and micrographs (SEM) ((b) and (c)) of porous chitosan scaffold. Micrographs show low and high magnification.

References

    1. Shi C., Zhu Y., Ran X., Wang M., Su Y., Cheng T. Therapeutic potential of chitosan and its derivatives in regenerative medicine. Journal of Surgical Research. 2006;133(2):185–192.
    1. Fung Y. UCSD. 865023. Center for the Engineering of Living Tissues; 2001. A proposal to the National science Foundation for an Engineering Research Centre at USCD.865023
    1. Langer R., Vacanti J. P. Tissue engineering. Science. 1993;260(5110):920–926. doi: 10.1126/science.8493529.
    1. Kim I.-Y., Seo S.-J., Moon H.-S., et al. Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances. 2008;26(1):1–21. doi: 10.1016/j.biotechadv.2007.07.009.
    1. Langer R., Tirrell D. A. Designing materials for biology and medicine. Nature. 2004;428(6982):487–492. doi: 10.1038/nature02388.
    1. Funakoshi T., Majima T., Iwasaki N., et al. Novel chitosan-based hyaluronan hybrid polymer fibers as a scaffold in ligament tissue engineering. Journal of Biomedical Materials Research Part A. 2005;74(3):338–346. doi: 10.1002/jbm.a.30237.
    1. Han C.-M., Zhang L.-P., Sun J.-Z., Shi H.-F., Zhou J., Gao C.-Y. Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering. Journal of Zhejiang University Science B. 2010;11(7):524–530. doi: 10.1631/jzus.b0900400.
    1. Caridade S. G., Monge C., Gilde F., Boudou T., Mano J. F., Picart C. Free-standing polyelectrolyte membranes made of chitosan and alginate. Biomacromolecules. 2013;14(5):1653–1660. doi: 10.1021/bm400314s.
    1. Silva S. S., Caridade S. G., Mano J. F., Reis R. L. Effect of crosslinking in chitosan/aloe vera-based membranes for biomedical applications. Carbohydrate Polymers. 2013;98(1):581–588. doi: 10.1016/j.carbpol.2013.06.022.
    1. Yang T.-L., Young T.-H. The enhancement of submandibular gland branch formation on chitosan membranes. Biomaterials. 2008;29(16):2501–2508. doi: 10.1016/j.biomaterials.2008.02.014.
    1. Zhang L., Ao Q., Wang A., et al. A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. Journal of Biomedical Materials Research Part A. 2006;77(2):277–284. doi: 10.1002/jbm.a.30614.
    1. Ge S., Zhao N., Wang L., et al. Bone repair by periodontal ligament stem cell-seeded nanohydroxyapatite-chitosan scaffold. International Journal of Nanomedicine. 2012;7:5405–5414. doi: 10.2147/IJN.S36714.
    1. Wu X., Black L., Santacana-Laffitte G., Patrick C. W., Jr. Preparation and assessment of glutaraldehyde-crosslinked collagen–chitosan hydrogels for adipose tissue engineering. Journal of Biomedical Materials Research Part A. 2007;81(1):59–65. doi: 10.1002/jbm.a.31003.
    1. da Silva M. L. A., Crawford A., Mundy J. M., et al. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Acta Biomaterialia. 2010;6(3):1149–1157. doi: 10.1016/j.actbio.2009.09.006.
    1. Yan L.-P., Wang Y.-J., Ren L., et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. Journal of Biomedical Materials Research, Part A. 2010;95(2):465–475. doi: 10.1002/jbm.a.32869.
    1. Silva J. M., Georgi N., Costa R., et al. Nanostructured 3D constructs based on chitosan and chondroitin sulphate multilayers for cartilage tissue engineering. PLoS ONE. 2013;8(2) doi: 10.1371/journal.pone.0055451.e55451
    1. Hsueh Y.-Y., Chang Y.-J., Huang T.-C., et al. Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells. Biomaterials. 2014;35(7):2234–2244. doi: 10.1016/j.biomaterials.2013.11.081.
    1. Tanaka N., Matsumoto I., Suzuki M., et al. Chitosan tubes can restore the function of resected phrenic nerves. Interactive CardioVascular and Thoracic Surgery. 2015 doi: 10.1093/icvts/ivv091.
    1. Boucard N., Viton C., Agay D., et al. The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials. 2007;28(24):3478–3488. doi: 10.1016/j.biomaterials.2007.04.021.
    1. Gobin A. S., Butler C. E., Mathur A. B. Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin-chitosan blend. Tissue Engineering. 2006;12(12):3383–3394. doi: 10.1089/ten.2006.12.3383.
    1. Hao T., Wen N., Cao J.-K., et al. The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthritis and Cartilage. 2010;18(2):257–265. doi: 10.1016/j.joca.2009.08.007.
    1. Meng D., Dong L., Wen Y., Xie Q. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration. Materials Science and Engineering: C. 2015;47:266–272. doi: 10.1016/j.msec.2014.11.049.
    1. Lizarbe M. A. Sustitutivos de tejidos: de los biomateriales a la ingeniería tisular. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. 2007;101(1):227–249.
    1. Nair L. S., Laurencin C. T. Biodegradable polymers as biomaterials. Progress in Polymer Science. 2007;32(8-9):762–798. doi: 10.1016/j.progpolymsci.2007.05.017.
    1. Ramakrishna S., Mayer J., Wintermantel E., Leong K. W. Biomedical applications of polymer-composite materials: a review. Composites Science and Technology. 2001;61(9):1189–1224. doi: 10.1016/s0266-3538(00)00241-4.
    1. Ratner B. D. Biomaterials Science: An Introduction to Materials in Medicine. Academic Press; 2004.
    1. Khor E., Lim L. Y. Implantable applications of chitin and chitosan. Biomaterials. 2003;24(13):2339–2349. doi: 10.1016/S0142-9612(03)00026-7.
    1. Muzzarelli R. A., Jeuniaux C., Gooday G. W. Chitin in Nature and Technology. Springer; 1986.
    1. Dhandayuthapani B., Yoshida Y., Maekawa T., Kumar D. S. Polymeric scaffolds in tissue engineering application: a review. International Journal of Polymer Science. 2011;2011:19. doi: 10.1155/2011/290602.290602
    1. Lodhi G., Kim Y.-S., Hwang J.-W., et al. Chitooligosaccharide and its derivatives: preparation and biological applications. BioMed Research International. 2014;2014:13. doi: 10.1155/2014/654913.654913
    1. Rudall K. Chitin and its association with other molecules. Journal of Polymer Science C: Polymer Symposia. 1969;28(1):83–102. doi: 10.1002/polc.5070280110.
    1. VandeVord P. J., Matthew H. W. T., Desilva S. P., Mayton L., Wu B., Wooley P. H. Evaluation of the biocompatibility of a chitosan scaffold in mice. Journal of Biomedical Materials Research. 2002;59(3):585–590. doi: 10.1002/jbm.1270.
    1. Kumar M. N. V. R. A review of chitin and chitosan applications. Reactive and Functional Polymers. 2000;46(1):1–27. doi: 10.1016/s1381-5148(00)00038-9.
    1. Lee D. W., Lim H., Chong H. N., Shim W. S. Advances in chitosan material and its hybrid derivatives: a review. The Open Biomaterials Journal. 2009;1(1):10–20. doi: 10.2174/1876502500901010010.
    1. Foda N. H., El-Laithy H. M., Tadros M. I. Implantable biodegradable sponges: effect of interpolymer complex formation of chitosan with gelatin on the release behavior of tramadol hydrochloride. Drug Development and Industrial Pharmacy. 2007;33(1):7–17. doi: 10.1080/03639040600975188.
    1. Rinaudo M. Chitin and chitosan: properties and applications. Progress in Polymer Science. 2006;31(7):603–632. doi: 10.1016/j.progpolymsci.2006.06.001.
    1. Harish Prashanth K. V., Tharanathan R. N. Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends in Food Science & Technology. 2007;18(3):117–131. doi: 10.1016/j.tifs.2006.10.022.
    1. Chenite A., Chaput C., Wang D., et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials. 2000;21(21):2155–2161. doi: 10.1016/s0142-9612(00)00116-2.
    1. Yi H., Wu L.-Q., Bentley W. E., et al. Biofabrication with chitosan. Biomacromolecules. 2005;6(6):2881–2894. doi: 10.1021/bm050410l.
    1. Chatelet C., Damour O., Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 2001;22(3):261–268. doi: 10.1016/s0142-9612(00)00183-6.
    1. Muzzarelli R. A. A. Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cellular and Molecular Life Sciences. 1997;53(2):131–140. doi: 10.1007/pl00000584.
    1. Tomihata K., Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;18(7):567–575. doi: 10.1016/s0142-9612(96)00167-6.
    1. Singh D. K., Ray A. R. Biomedical applications of chitin, chitosan, and their derivatives. Journal of Macromolecular Science C: Polymer Reviews. 2000;40(1):69–83. doi: 10.1081/mc-100100579.
    1. Zeng L., Qin C., Wang W., Chi W., Li W. Absorption and distribution of chitosan in mice after oral administration. Carbohydrate Polymers. 2008;71(3):435–440. doi: 10.1016/j.carbpol.2007.06.016.
    1. Chen X.-G., Zheng L., Wang Z., Lee C.-Y., Park H.-J. Molecular affinity and permeability of different molecular weight chitosan membranes. Journal of Agricultural and Food Chemistry. 2002;50(21):5915–5918. doi: 10.1021/jf020151g.
    1. Chae S. Y., Jang M.-K., Nah J.-W. Influence of molecular weight on oral absorption of water soluble chitosans. Journal of Controlled Release. 2005;102(2):383–394. doi: 10.1016/j.jconrel.2004.10.012.
    1. Sánchez A., Ballesteros M. R. S., Vega-Baudrit J. R., Rojas M. Utilización de soportes de hidrogel de quitosano obtenidos a partir de desechos del camarón langostino (Pleuroncodes planipes) para el crecimiento ‘in vitro’ de fibroblastos humanos. Revista Iberoamericana de Polímeros. 2007;8(5):347–362.
    1. Ho M.-H., Kuo P.-Y., Hsieh H.-J., et al. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials. 2004;25(1):129–138. doi: 10.1016/s0142-9612(03)00483-6.
    1. Hutmacher D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–2543. doi: 10.1016/S0142-9612(00)00121-6.
    1. Madihally S. V., Matthew H. W. T. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20(12):1133–1142. doi: 10.1016/s0142-9612(99)00011-3.
    1. Ma L., Gao C., Mao Z., et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003;24(26):4833–4841. doi: 10.1016/s0142-9612(03)00374-0.
    1. Roh I. J., Kwon I.-C. Fabrication of a pure porous chitosan bead matrix: influences of phase separation on the microstructure. Journal of Biomaterials Science, Polymer Edition. 2002;13(7):769–782. doi: 10.1163/156856202760197401.
    1. Liu H., Yao F., Zhou Y., et al. Porous poly (DL-lactic acid) modified chitosan-gelatin scaffolds for tissue engineering. Journal of Biomaterials Applications. 2005;19(4):303–322. doi: 10.1177/0885328205048590.
    1. Kiuchi H., Kai W., Inoue Y. Preparation and characterization of poly(ethylene glycol) crosslinked chitosan films. Journal of Applied Polymer Science. 2008;107(6):3823–3830. doi: 10.1002/app.27546.
    1. Adekogbe I., Ghanem A. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials. 2005;26(35):7241–7250. doi: 10.1016/j.biomaterials.2005.05.043.
    1. Stefan J., Lorkowska-Zawicka B., Kaminski K., Szczubialka K., Nowakowska M., Korbut R. The current view on biological potency of cationically modified chitosan. Journal of Physiology and Pharmacology. 2014;65(3):341–347.
    1. Dvir T., Tsur-Gang O., Cohen S. ‘Designer’ scaffolds for tissue engineering and regeneration. Israel Journal of Chemistry. 2005;45(4):487–494. doi: 10.1560/378j-xmb1-nakf-ykq1.
    1. Şenel S., McClure S. J. Potential applications of chitosan in veterinary medicine. Advanced Drug Delivery Reviews. 2004;56(10):1467–1480. doi: 10.1016/j.addr.2004.02.007.
    1. Di Martino A., Sittinger M., Risbud M. V. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26(30):5983–5990. doi: 10.1016/j.biomaterials.2005.03.016.
    1. Jagur-Grodzinski J. Biomedical application of functional polymers. Reactive and Functional Polymers. 1999;39(2):99–138. doi: 10.1016/s1381-5148(98)00054-6.
    1. Khan T. A., Peh K. K., Ch'ng H. S. Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing. Journal of Pharmacy & Pharmaceutical Sciences. 2000;3(3):303–311.
    1. Rao S. B., Sharma C. P. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. Journal of Biomedical Materials Research. 1997;34(1):21–28. doi: 10.1002/(sici)1097-4636(199701)34:160;21::aid-jbm462;;2-p.
    1. Ueno H., Mori T., Fujinaga T. Topical formulations and wound healing applications of chitosan. Advanced Drug Delivery Reviews. 2001;52(2):105–115. doi: 10.1016/S0169-409X(01)00189-2.
    1. Oliveira S. M., Mijares D. Q., Turner G., Amaral I. F., Barbosa M. A., Teixeira C. C. Engineering endochondral bone: in vivo studies. Tissue Engineering Part A. 2009;15(3):635–643. doi: 10.1089/ten.tea.2008.0052.
    1. Amaral I. F., Granja P. L., Barbosa M. A. Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study. Journal of Biomaterials Science, Polymer Edition. 2005;16(12):1575–1593. doi: 10.1163/156856205774576736.
    1. Amaral I. F., Lamghari M., Sousa S. R., Sampaio P., Barbosa M. A. Rat bone marrow stromal cell osteogenic differentiation and fibronectin adsorption on chitosan membranes: the effect of the degree of acetylation. Journal of Biomedical Materials Research Part A. 2005;75(2):387–397. doi: 10.1002/jbm.a.30436.
    1. Lahiji A., Sohrabi A., Hungerford D. S., Frondoza C. G. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. Journal of Biomedical Materials Research. 2000;51(4):586–595. doi: 10.1002/1097-4636(20000915)51:4<586::AID-JBM6>;2-S.
    1. Yuan Y., Zhang P., Yang Y., Wang X., Gu X. The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials. 2004;25(18):4273–4278. doi: 10.1016/j.biomaterials.2003.11.029.
    1. Prasitsilp M., Jenwithisuk R., Kongsuwan K., Damrongchai N., Watts P. Cellular responses to chitosan in vitro: the importance of deacetylation. Journal of Materials Science: Materials in Medicine. 2000;11(12):773–778. doi: 10.1023/a:1008997311364.
    1. Freier T., Koh H. S., Kazazian K., Shoichet M. S. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials. 2005;26(29):5872–5878. doi: 10.1016/j.biomaterials.2005.02.033.
    1. Freier T., Montenegro R., Koh H. S., Shoichet M. S. Chitin-based tubes for tissue engineering in the nervous system. Biomaterials. 2005;26(22):4624–4632. doi: 10.1016/j.biomaterials.2004.11.040.
    1. Amaral I. F., Cordeiro A. L., Sampaio P., Barbosa M. A. Attachment, spreading and short-term proliferation of human osteoblastic cells cultured on chitosan films with different degrees of acetylation. Journal of Biomaterials Science, Polymer Edition. 2007;18(4):469–485. doi: 10.1163/156856207780425068.
    1. Amaral I. F., Sampaio P., Barbosa M. A. Three-dimensional culture of human osteoblastic cells in chitosan sponges: the effect of the degree of acetylation. Journal of Biomedical Materials Research, Part A. 2006;76(2):335–346. doi: 10.1002/jbm.a.30522.
    1. Nishimura K., Nishimura S., Nishi N., Tokura S., Azuma I. Immunological activity of chitin derivatives. In: Muzzarelli R., Jeuniaux C., Gooday G., editors. Chitin in Nature and Technology. New York, NY, USA: Springer; 1986. pp. 477–483.
    1. Mori T., Murakami M., Okumura M., Kadosawa T., Uede T., Fujinaga T. Mechanism of macrophage activation by chitin derivatives. Journal of Veterinary Medical Science. 2005;67(1):51–56. doi: 10.1292/jvms.67.51.
    1. Ge S., Zhao N., Wang L., et al. Bone repair by periodontal ligament stem cell-seeded nanohydroxyapatite-chitosan scaffold. International Journal of Nanomedicine. 2012;7:5405–5414. doi: 10.2147/ijn.s36714.
    1. Dang J. M., Leong K. W. Natural polymers for gene delivery and tissue engineering. Advanced Drug Delivery Reviews. 2006;58(4):487–499. doi: 10.1016/j.addr.2006.03.001.
    1. Muzzarelli R. A. A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers. 2009;76(2):167–182. doi: 10.1016/j.carbpol.2008.11.002.
    1. Ko Y.-G., Kawazoe N., Tateishi T., Chen G. Preparation of chitosan scaffolds with a hierarchical porous structure. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2010;93(2):341–350. doi: 10.1002/jbm.b.31586.
    1. Lin S.-J., Jee S.-H., Hsaio W.-C., Lee S.-J., Young T.-H. Formation of melanocyte spheroids on the chitosan-coated surface. Biomaterials. 2005;26(12):1413–1422. doi: 10.1016/j.biomaterials.2004.05.002.
    1. Huang T.-W., Young Y.-H., Cheng P.-W., Chan Y.-H., Young T.-H. Culture of nasal epithelial cells using chitosan-based membranes. The Laryngoscope. 2009;119(10):2066–2070. doi: 10.1002/lary.20609.
    1. Kean T., Roth S., Thanou M. Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. Journal of Controlled Release. 2005;103(3):643–653. doi: 10.1016/j.jconrel.2005.01.001.
    1. Matsuda A., Kobayashi H., Itoh S., Kataoka K., Tanaka J. Immobilization of laminin peptide in molecularly aligned chitosan by covalent bonding. Biomaterials. 2005;26(15):2273–2279. doi: 10.1016/j.biomaterials.2004.07.032.
    1. Itoh S., Matsuda A., Kobayashi H., Ichinose S., Shinomiya K., Tanaka J. Effects of a laminin peptide (YIGSR) immobilized on crab-tendon chitosan tubes on nerve regeneration. Journal of Biomedical Materials Research, Part B: Applied Biomaterials. 2005;73(2):375–382. doi: 10.1002/jbm.b.30224.
    1. Simões M. J., Gärtner A., Shirosaki Y., et al. In vitro and in vivo chitosan membranes testing for peripheral nerve reconstruction. Acta Medica Portuguesa. 2011;24(1):43–52.
    1. Zhu C., Fan D., Duan Z., et al. Initial investigation of novel human-like collagen/chitosan scaffold for vascular tissue engineering. Journal of Biomedical Materials Research Part A. 2009;89(3):829–840. doi: 10.1002/jbm.a.32256.
    1. Shi H., Han C., Mao Z., Ma L., Gao C. Enhanced angiogenesis in porous collagen-chitosan scaffolds loaded with angiogenin. Tissue Engineering Part A. 2008;14(11):1775–1785. doi: 10.1089/ten.tea.2007.0007.
    1. Barbosa M. A., Pêgo A. P., Amaral I. F. 2.213—Chitosan. In: Ducheyne P., editor. Comprehensive Biomaterials. Oxford, UK: Elsevier; 2011. pp. 221–237.
    1. Mei L., Hu D., Ma J., Wang X., Yang Y., Liu J. Preparation, characterization and evaluation of chitosan macroporous for potential application in skin tissue engineering. International Journal of Biological Macromolecules. 2012;51(5):992–997. doi: 10.1016/j.ijbiomac.2012.08.004.
    1. Choi J. S., Yoo H. S. Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties. Journal of Biomedical Materials Research, Part A. 2010;95(2):564–573. doi: 10.1002/jbm.a.32848.
    1. Chen Y.-H., Wang I.-J., Young T.-H. Formation of keratocyte spheroids on chitosan-coated surface can maintain keratocyte phenotypes. Tissue Engineering Part A. 2009;15(8):2001–2013. doi: 10.1089/ten.tea.2008.0251.
    1. Wei C., Hou C., Gu Q., Jiang L., Zhu B., Sheng A. Efficacy of thermosensitive hydroxybutyl chitosan in prevention of post-operative abdominal adhesions in a rat model. Iranian Polymer Journal. 2009;18(5):355–364.
    1. Ławniczak P., Grobelski B., Pasieka Z. Properties comparison of intraperitoneal hernia meshes in reconstruction of the abdominal wall—animal model study. Polish Journal of Surgery. 2011;83(1):19–26. doi: 10.2478/v10035-011-0003-y.
    1. Zhou X.-L., Chen S.-W., Liao G.-D., et al. Preventive effect of gelatinizedly-modified chitosan film on peritoneal adhesion of different types. World Journal of Gastroenterology. 2007;13(8):1262–1267. doi: 10.3748/wjg.v13.i8.1262.
    1. Zakhem E., Raghavan S., Gilmont R. R., Bitar K. N. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering. Biomaterials. 2012;33(19):4810–4817. doi: 10.1016/j.biomaterials.2012.03.051.
    1. Yang T.-L. Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. International Journal of Molecular Sciences. 2011;12(3):1936–1963. doi: 10.3390/ijms12031936.
    1. Wu C.-C., Ko F.-N., Huang T.-F., Teng C.-M. Mechanisms-regulated platelet spreading after initial platelet contact with collagen. Biochemical and Biophysical Research Communications. 1996;220(2):388–393. doi: 10.1006/bbrc.1996.0415.
    1. Mercy H., Halim A., Hussein A. Chitosan-derivatives as hemostatic agents: their role in tissue regeneration. Regenerative Research. 2012;1(1):38–46.
    1. Whang H. S., Kirsch W., Zhu Y. H., Yang C. Z., Hudson S. M. Hemostatic agents derived from chitin and chitosan. Journal of Macromolecular Science, Part C: Polymer Reviews. 2005;45(4):309–323. doi: 10.1080/15321790500304122.
    1. Pusateri A. E., McCarthy S. J., Gregory K. W., et al. Effect of a chitosan-based hemostatic dressing on blood loss and survival in a model of severe venous hemorrhage and hepatic injury in swine. The Journal of Trauma-Injury Infection & Critical Care. 2003;54(1):177–182. doi: 10.1097/00005373-200301000-00023.
    1. Obara K., Ishihara M., Ishizuka T., et al. Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials. 2003;24(20):3437–3444. doi: 10.1016/S0142-9612(03)00220-5.
    1. Inas N. E.-H., Kawkab A. A. Application of chitosan for wound repair in dogs. Life Science Journal. 2012;1(9, article 2201)
    1. Mohamed K. R., El-Rashidy Z. M., Salama A. A. In vitro properties of nano-hydroxyapatite/chitosan biocomposites. Ceramics International. 2011;37(8):3265–3271. doi: 10.1016/j.ceramint.2011.05.121.
    1. Kong L., Gao Y., Cao W., Gong Y., Zhao N., Zhang X. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. Journal of Biomedical Materials Research Part A. 2005;75(2):275–282. doi: 10.1002/jbm.a.30414.
    1. Chen Y., Huang Z., Li X., et al. In vitro biocompatibility and osteoblast differentiation of an injectable chitosan/nano-hydroxyapatite/collagen scaffold. Journal of Nanomaterials. 2012;2012:6. doi: 10.1155/2012/401084.401084
    1. Mohamed K. R., Beherei H. H., El-Rashidy Z. M. In vitro study of nano-hydroxyapatite/chitosan-gelatin composites for bio-applications. Journal of Advanced Research. 2014;5(2):201–208. doi: 10.1016/j.jare.2013.02.004.
    1. Whu S. W., Hung K.-C., Hsieh K.-H., Chen C.-H., Tsai C.-L., Hsu S.-H. In vitro and in vivo evaluation of chitosan-gelatin scaffolds for cartilage tissue engineering. Materials Science & Engineering C. 2013;33(5):2855–2863. doi: 10.1016/j.msec.2013.03.003.
    1. Xianmiao C., Yubao L., Yi Z., Li Z., Jidong L., Huanan W. Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Materials Science and Engineering C. 2009;29(1):29–35. doi: 10.1016/j.msec.2008.05.008.
    1. Zo S. M., Singh D., Kumar A., Cho Y. W., Oh T. H., Han S. S. Chitosan-hydroxyapatite macroporous matrix for bone tissue engineering. Current Science. 2012;103(12):1438–1446.
    1. Saltarrelli Junior J. G., Mukherjee D. P. In vivo testing of a bone graft containing chitosan, calcium sulfate and osteoblasts in a paste form in a critical size defect model in rats. Journal of Biomedical Science and Engineering. 2009;02:24–29. doi: 10.4236/jbise.2009.21005.
    1. Zhang J., Liu G., Wu Q., Zuo J., Qin Y., Wang J. Novel mesoporous hydroxyapatite/chitosan composite for bone repair. Journal of Bionic Engineering. 2012;9(2):243–251. doi: 10.1016/s1672-6529(11)60117-0.
    1. Neves S. C., Moreira Teixeira L. S., Moroni L., et al. Chitosan/Poly(ɛ-caprolactone) blend scaffolds for cartilage repair. Biomaterials. 2011;32(4):1068–1079. doi: 10.1016/j.biomaterials.2010.09.073.
    1. Weir M. D., Xu H. H. K. Osteoblastic induction on calcium phosphate cement-chitosan constructs for bone tissue engineering. Journal of Biomedical Materials Research, Part A. 2010;94(1):223–233. doi: 10.1002/jbm.a.32665.
    1. Dahlan K., Dewi S. U., Nurlaila A., Soejoko D. Synthesis and characterization of calcium phosphate/chitosan composites. International Journal of Basic & Applied Sciences. 2012;12(1):50–57.
    1. Lai G.-J., Shalumon K. T., Chen S.-H., Chen J.-P. Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydrate Polymers. 2014;111:288–297. doi: 10.1016/j.carbpol.2014.04.094.
    1. Lee J. H., Jeong B. O. The effect of hyaluronate-carboxymethyl cellulose on bone graft substitute healing in a rat spinal fusion model. Journal of Korean Neurosurgical Society. 2011;50(5):409–414. doi: 10.3340/jkns.2011.50.5.409.
    1. Lee M., Li W., Siu R. K., et al. Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers. Biomaterials. 2009;30(30):6094–6101. doi: 10.1016/j.biomaterials.2009.07.046.
    1. Anitha A., Sowmya S., Kumar P. T. S., et al. Chitin and chitosan in selected biomedical applications. Progress in Polymer Science. 2014;39(9):1644–1667. doi: 10.1016/j.progpolymsci.2014.02.008.
    1. Ma S., Chen Z., Qiao F., et al. Guided bone regeneration with tripolyphosphate cross-linked asymmetric chitosan membrane. Journal of Dentistry. 2014;42(12):1603–1612. doi: 10.1016/j.jdent.2014.08.015.
    1. Kim S., Bedigrew K., Guda T., et al. Novel osteoinductive photo-cross-linkable chitosan-lactide-fibrinogen hydrogels enhance bone regeneration in critical size segmental bone defects. Acta Biomaterialia. 2014;10(12):5021–5033. doi: 10.1016/j.actbio.2014.08.028.
    1. Kang Y. H., Shin S. H., Kim K. C. Osteoconductive effect of chitosan/hydroxyapatite composite matrix on rat skull defect. Tissue Engineering and Regenerative Medicine. 2011;8(1):23–31.
    1. Lee J. S., Baek S. D., Venkatesan J., et al. In vivo study of chitosan-natural nano hydroxyapatite scaffolds for bone tissue regeneration. International Journal of Biological Macromolecules. 2014;67:360–366. doi: 10.1016/j.ijbiomac.2014.03.053.
    1. Choi B., Kim S., Lin B., et al. Visible-light-initiated hydrogels preserving cartilage extracellular signaling for inducing chondrogenesis of mesenchymal stem cells. Acta Biomaterialia. 2015;12:30–41. doi: 10.1016/j.actbio.2014.10.013.
    1. Zhu Y., Wu H., Sun S., Zhou T., Wu J., Wan Y. Designed composites for mimicking compressive mechanical properties of articular cartilage matrix. Journal of the Mechanical Behavior of Biomedical Materials. 2014;36:32–46. doi: 10.1016/j.jmbbm.2014.04.003.
    1. Choi B., Kim S., Lin B., Wu B. M., Lee M. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Applied Materials & Interfaces. 2014;6(22):20110–20121. doi: 10.1021/am505723k.
    1. Mirahmadi F., Tafazzoli-Shadpour M., Shokrgozar M. A., Bonakdar S. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Materials Science and Engineering C. 2013;33(8):4786–4794. doi: 10.1016/j.msec.2013.07.043.
    1. Sheehy E. J., Mesallati T., Vinardell T., Kelly D. J. Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels. Acta Biomaterialia. 2015;13:245–253. doi: 10.1016/j.actbio.2014.11.031.
    1. Yin D., Wu H., Liu C., et al. Fabrication of composition-graded collagen/chitosan–polylactide scaffolds with gradient architecture and properties. Reactive and Functional Polymers. 2014;83:98–106. doi: 10.1016/j.reactfunctpolym.2014.07.017.
    1. Li C., Wang L., Yang Z., Kim G., Chen H., Ge Z. A viscoelastic chitosan-modified three-dimensional porous poly (L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering. Journal of Biomaterials Science, Polymer Edition. 2012;23(1–4):405–424. doi: 10.1163/092050610x551970.
    1. Kuo C., Chen C., Hsiao C., Chen J. Incorporation of chitosan in biomimetic gelatin/chondroitin-6-sulfate/hyaluronan cryogel for cartilage tissue engineering. Carbohydrate Polymers. 2015;117:722–730. doi: 10.1016/j.carbpol.2014.10.056.
    1. Sandoval-Sánchez J. H., Ramos-Zúñiga R., de Anda S. L., et al. A new bilayer chitosan scaffolding as a dural substitute: experimental evaluation. World Neurosurgery. 2012;77(3-4):577–582. doi: 10.1016/j.wneu.2011.07.007.

Source: PubMed

3
Suscribir