Cerebrovascular Reactivity and Central Arterial Stiffness in Habitually Exercising Healthy Adults

Kathleen B Miller, Anna J Howery, Ronée E Harvey, Marlowe W Eldridge, Jill N Barnes, Kathleen B Miller, Anna J Howery, Ronée E Harvey, Marlowe W Eldridge, Jill N Barnes

Abstract

Reduced cerebrovascular reactivity to a vasoactive stimulus is associated with age-related diseases such as stroke and cognitive decline. Habitual exercise is protective against cognitive decline and is associated with reduced stiffness of the large central arteries that perfuse the brain. In this context, we evaluated the age-related differences in cerebrovascular reactivity in healthy adults who habitually exercise. In addition, we sought to determine the association between central arterial stiffness and cerebrovascular reactivity. We recruited 22 young (YA: age = 27 ± 5 years, range 18-35 years) and 21 older (OA: age = 60 ± 4 years, range 56-68 years) habitual exercisers who partake in at least 150 min of structured aerobic exercise each week. Middle cerebral artery velocity (MCAv) was recorded using transcranial Doppler ultrasound. In order to assess cerebrovascular reactivity, MCAv, end-tidal carbon dioxide (ETCO2), and mean arterial pressure (MAP) were continuously recorded at rest and during stepwise elevations of 2, 4, and 6% inhaled CO2. Cerebrovascular conductance index (CVCi) was calculated as MCAv/MAP. Central arterial stiffness was assessed using carotid-femoral pulse wave velocity (PWV). Older adults had higher PWV (YA: 6.2 ± 1.2 m/s; OA: 7.5 ± 1.3 m/s; p < 0.05) compared with young adults. MCAv and CVCi reactivity to hypercapnia were not different between young and older adults (MCAv reactivity, YA: 2.0 ± 0.2 cm/s/mmHg; OA: 2.0 ± 0.2 cm/s/mmHg; p = 0.77, CVCi reactivity, YA: 0.018 ± 0.002 cm/s/mmHg2; OA: 0.015 ± 0.001 cm/s/mmHg2; p = 0.27); however, older adults demonstrated higher MAP reactivity to hypercapnia (YA: 0.4 ± 0.1 mmHg/mmHg; OA: 0.7 ± 0.1 mmHg/mmHg; p < 0.05). There were no associations between PWV and cerebrovascular reactivity (range: r = 0.00-0.39; p = 0.07-0.99). Our results demonstrate that cerebrovascular reactivity was not different between young and older adults who habitually exercise; however, MAP reactivity was augmented in older adults. This suggests an age-associated difference in the reliance on MAP to increase cerebral blood flow during hypercapnia.

Keywords: aerobic exercise; aging; blood pressure; cerebral blood flow; pulse wave velocity.

Figures

FIGURE 1
FIGURE 1
Cerebrovascular reactivity to hypercapnia. (A) Relationship between end-tidal CO2 (ETCO2) and variables of interest: MCAv (left), CVCi (middle), and MAP (right) during hypercapnia. Data are mean ± standard error of the mean. CVCi = MCAv/MAP. ∗p < 0.05 compared to young adults (two-way repeated measures ANOVA). (B) Reactivity slopes for MCAv (left), CVCi (middle), and MAP (right) during hypercapnia. Young adults are shown in black and older adults are shown in gray. Data are mean ± standard error of the mean. ∗p < 0.05 compared to young adults (one-way ANOVA).

References

    1. Aaslid R., Lindegaard K. F., Sorteberg W., Nornes H. (1989). Cerebral autoregulation dynamics in humans. Stroke 20 45–52. 10.1161/01.STR.20.1.45
    1. Ainslie P. N., Cotter J. D., George K. P., Lucas S., Murrell C., Shave R., et al. (2008). Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J. Physiol. 586 4005–4010. 10.1113/jphysiol.2008.158279
    1. Bailey D. M., Marley C. J., Brugniaux J. V., Hodson D., New K. J., Ogoh S., et al. (2013). Elevated aerobic fitness sustained throughout the adult lifespan is associated with improved cerebral hemodynamics. Stroke 44 3235–3238. 10.1161/STROKEAHA.113.002589
    1. Barnes J. N., Harvey R. E., Zuk S. M., Lundt E. S., Lesnick T. G., Gunter J. L., et al. (2017). Aortic hemodynamics and white matter hyperintensities in normotensive postmenopausal women. J. Neurol. 264 938–945. 10.1007/s00415-017-8476-1
    1. Barnes J. N., Schmidt J. E., Nicholson W. T., Joyner M. J. (2012). Cyclooxygenase inhibition abolishes age-related differences in cerebral vasodilator responses to hypercapnia. J. Appl. Physiol. 112 1884–1890. 10.1152/japplphysiol.01270.2011
    1. Barnes J. N., Taylor J. L., Kluck B. N., Johnson C. P., Joyner M. J. (2013). Cerebrovascular reactivity is associated with maximal aerobic capacity in healthy older adults. J. Appl. Physiol. 114 1383–1387. 10.1152/japplphysiol.01258.2012
    1. Berkenbosch A., Bovill J. G., Dahan A., DeGoede J., Olievier I. C. (1989). The ventilatory CO2 sensitivities from read’s rebreathing method and the steady-state method are not equal in man. J. Physiol. 411 367–377. 10.1113/jphysiol.1989.sp017578
    1. Bishop C. C., Powell S., Rutt D., Browse N. L. (1986). Transcranial doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke 17 913–915. 10.1161/01.STR.17.5.913
    1. Choi J. Y., Morris J. C., Hsu C. Y. (1998). Aging and cerebrovascular disease. Neurol. Clin. 16 687–711. 10.1016/S0733-8619(05)70089-X
    1. Claassen J. A., Zhang R., Fu Q., Witkowski S., Levine B. D. (2007). Transcranial doppler estimation of cerebral blood flow and cerebrovascular conductance during modified rebreathing. J. Appl. Physiol. 102 870–877. 10.1152/japplphysiol.00906.2006
    1. Coverdale N. S., Badrov M. B., Shoemaker J. K. (2017). Impact of age on cerebrovascular dilation versus reactivity to hypercapnia. J. Cereb. Blood Flow Metab. 37 344–355. 10.1177/0271678X15626156
    1. Galvin S. D., Celi L. A., Thomas K. N., Clendon T. R., Galvin I. F., Bunton R. W., et al. (2010). Effects of age and coronary artery disease on cerebrovascular reactivity to carbon dioxide in humans. Anaesth. Intensive. Care 38 710–717.
    1. García-Río F., Villamor A., Gómez-Mendieta A., Lores V., Rojo B., Ramírez T., et al. (2007). The progressive effects of ageing on chemosensitivity in healthy subjects. Respir. Med. 101 2192–2198. 10.1016/j.rmed.2007.04.015
    1. Geda Y. E., Roberts R. O., Knopman D. S., Christianson T. J. H., Pankratz V. S., Ivnik R. J., et al. (2010). Physical exercise and mild cognitive impairment: a population-based study. Arch. Neurol. 67 80–86. 10.1001/archneurol.2009.297
    1. Glodzik L., Randall C., Rusinek H., de Leon M. J. (2013). Cerebrovascular reactivity to carbon dioxide in Alzheimer’s disease. J. Alzheimers Dis. 35 427–440. 10.3233/JAD-122011
    1. Godin G., Shephard R. J. (1985). A simple method to assess exercise behavior in the community. Can. J. Appl. Sport Sci. 10 141–146.
    1. Harvey R. E., Barnes J. N., Hart E. C. J., Nicholson W. T., Joyner M. J., Casey D. P. (2016). Influence of sympathetic nerve activity on aortic hemodynamics and pulse wave velocity in women. Am. J. Physiol. Heart Circ. Physiol. 312 H340–H346. 10.1152/ajpheart.00447.2016
    1. Iadecola C. (2004). Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci. 5 347–360. 10.1038/nrn1387
    1. Iadecola C., Yaffe K., Biller J., Bratzke L. C., Faraci F. M., Gorelick P. B., et al. (2016). Impact of hypertension on cognitive function: a scientific statement from the American heart association. Hypertension 68 e67–e94. 10.1161/HYP.0000000000000053
    1. Iliff L. D., Zilkha E., Boulay G. H. D., Marshall J., Russell R. W. R., Symon L. (1974). Cerebrovascular CO2 reactivity of the fast and slow clearing compartments. Stroke 5 607–611. 10.1161/01.STR.5.5.607
    1. Jaruchart T., Suwanwela N. C., Tanaka H., Suksom D. (2016). Arterial stiffness is associated with age-related differences in cerebrovascular conductance. Exp. Gerontol. 73 59–64. 10.1016/j.exger.2015.11.006
    1. Kelly R., Hayward C., Avolio A., O’Rourke M. (1989). Noninvasive determination of age-related changes in the human arterial pulse. Circulation 80 1652–1659. 10.1161/01.CIR.80.6.1652
    1. Kety S. S., Schmidt C. F. (1948). The effects of altered aterail tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men.1. J. Clin. Invest. 27 484–492. 10.1172/JCI101995
    1. Kisler K., Nelson A. R., Montagne A., Zlokovic B. V. (2017). Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 18 419–434. 10.1038/nrn.2017.48
    1. Lhuissier F. J., Canouï-Poitrine F., Richalet J.-P. (2012). Ageing and cardiorespiratory response to hypoxia. J. Physiol. 590 5461–5474. 10.1113/jphysiol.2012.238527
    1. London G. M., Pannier B. (2010). Arterial functions: how to interpret the complex physiology. Nephrol. Dial. Transplant. 25 3815–3823. 10.1093/ndt/gfq614
    1. Maillard P., Mitchell G. F., Himali J. J., Beiser A., Fletcher E., Tsao C. W., et al. (2017). Aortic stiffness, increased white matter free water, and altered microstructural integrity: a continuum of injury. Stroke 48 1567–1573. 10.1161/STROKEAHA.116.016321
    1. Matteis M., Troisi E., Monaldo B. C., Caltagirone C., Silvestrini M. (1998). Age and sex differences in cerebral hemodynamics: a transcranial doppler study. Stroke 29 963–967. 10.1161/01.STR.29.5.963
    1. Mitchell G. F. (2008). Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J. Appl. Physiol. 105 1652–1660. 10.1152/japplphysiol.90549.2008
    1. Mitchell G. F., van Buchem M. A., Sigurdsson S., Gotal J. D., Jonsdottir M. K., Kjartansson al. (2011). Arterial stiffness, pressure and flow pulsatility and brain structure and function: the age, gene/environment susceptibility – reykjavik study. Brain 134 3398–3407. 10.1093/brain/awr253
    1. Murrell C. J., Cotter J. D., Thomas K. N., Lucas S. J. E., Williams M. J. A., Ainslie P. N. (2013). Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: effect of age and 12-week exercise training. Age 35 905–920. 10.1007/s11357-012-9414-x
    1. Niiranen T. J., Lyass A., Larson M. G., Hamburg N. M., Benjamin E. J., Mitchell G. F., et al. (2017). Prevalence, correlates, and prognosis of healthy vascular aging in a western community-dwelling cohort: the framingham heart study. Hypertension 70 267–274. 10.1161/HYPERTENSIONAHA.117.09026
    1. O’Rourke M. F., Gallagher D. E. (1996). Pulse wave analysis. J. Hypertens. Suppl. 14 S147–S157.
    1. O’Rourke M. F., Safar M. E. (2005). Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 46 200–204. 10.1161/01.HYP.0000168052.00426.65
    1. Oudegeest-Sander M. H., van Beek A. H., Abbink K., Olde Rikkert M. G., Hopman M. T., Claassen J. A. (2014). Assessment of dynamic cerebral autoregulation and cerebrovascular CO2 reactivity in ageing by measurements of cerebral blood flow and cortical oxygenation. Exp. Physiol. 99 586–598. 10.1113/expphysiol.2013.076455
    1. Paleczny B., Niewiński P., Rydlewska A., Piepoli M. F., Borodulin-Nadzieja L., Jankowska E. A., et al. (2014). Age-related reflex responses from peripheral and central chemoreceptors in healthy men. Clin. Auton. Res. 24 285–296. 10.1007/s10286-014-0263-9
    1. Perry B. G., Lucas S. J. E., Thomas K. N., Cochrane D. J., Mündel T. (2014). The effect of hypercapnia on static cerebral autoregulation. Physiol. Rep. 2:e12059. 10.14814/phy2.12059
    1. Poulin M. J., Robbins P. A. (1996). Indexes of flow and cross-sectional area of the middle cerebral artery using doppler ultrasound during hypoxia and hypercapnia in humans. Stroke 27 2244–2250. 10.1161/01.STR.27.12.2244
    1. Reich T., Rusinek H. (1989). Cerebral cortical and white matter reactivity to carbon dioxide. Stroke 20 453–457. 10.1161/01.STR.20.4.453
    1. Rogers R. L., Meyer J. S., Mortel K. F., Mahurin R. K., Thornby J. (1985). Age-related reductions in cerebral vasomotor reactivity and the law of initial value: a 4-year prospective longitudinal study. J. Cereb. Blood Flow Metab. 5 79–85. 10.1038/jcbfm.1985.11
    1. Schieve J. F., Wilson W. P. (1953). The influence of age, anesthesia and cerebral arteriosclerosis on cerebral vascular activity to CO2. Am. J. Med. 15 171–174. 10.1016/0002-9343(53)90067-9
    1. Schwertfeger N., Neu P., Schlattmann P., Lemke H., Heuser I., Bajbouj M. (2006). Cerebrovascular reactivity over time course in healthy subjects. J. Neurol. Sci. 249 135–139. 10.1016/j.jns.2006.06.009
    1. Serrador J. M., Picot P. A., Rutt B. K., Shoemaker J. K., Bondar R. L. (2000). MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke 31 1672–1678. 10.1161/01.STR.31.7.1672
    1. Silvestrini M., Pasqualetti P., Baruffaldi R., Bartolini M., Handouk Y., Matteis M., et al. (2006). Cerebrovascular reactivity and cognitive decline in patients with alzheimer disease. Stroke 37 1010–1015. 10.1161/01.STR.0000206439.62025.97
    1. Tanaka H., DeSouza C. A., Seals D. R. (1998). Absence of age-related increase in central arterial stiffness in physically active women. Arterioscler. Thromb. Vasc. Biol. 18 127–132. 10.1161/01.ATV.18.1.127
    1. Tanaka H., Dinenno F. A., Monahan K. D., Clevenger C. M., DeSouza C. A., Seals D. R. (2000). Aging, habitual exercise, and dynamic arterial compliance. Circulation 102 1270–1275. 10.1161/01.CIR.102.11.1270
    1. Tomoto T., Imai T., Ogoh S., Maeda S., Sugawara J. (2018). Relationship between aortic compliance and impact of cerebral blood flow fluctuation to dynamic orthostatic challenge in endurance athletes. Front. Physiol. 9:25. 10.3389/fphys.2018.00025
    1. Tsao C. W., Himali J. J., Beiser A. S., Larson M. G., DeCarli C., Vasan R. S., et al. (2016). Association of arterial stiffness with progression of subclinical brain and cognitive disease. Neurology 86 619–626. 10.1212/WNL.0b013e3182a43e1c
    1. Tsao C. W., Seshadri S., Beiser A. S., Westwood A. J., DeCarli C., Au R., et al. (2013). Relations of arterial stiffness and endothelial function to brain aging in the community. Neurology 81 984–991. 10.1212/WNL.0000000000002368
    1. Tsuda Y., Hartmann A. (1989). Changes in hyperfrontality of cerebral blood flow and carbon dioxide reactivity with age. Stroke 20 1667–1673. 10.1161/01.STR.20.12.1667
    1. Tuttolomondo A., Di Sciacca R., Di Raimondo D., Serio A., D’Aguanno G., Pinto A., et al. (2010). Arterial stiffness indexes in acute ischemic stroke: relationship with stroke subtype. Atherosclerosis 211 187–194. 10.1016/j.atherosclerosis.2010.02.010
    1. Vaitkevicius P. V., Fleg J. L., Engel J. H., O’Connor F. C., Wright J. G., Lakatta L. E., et al. (1993). Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation 88 1456–1462. 10.1161/01.CIR.88.4.1456
    1. Vicenzini E., Ricciardi M. C., Altieri M., Puccinelli F., Bonaffini N., Piero V. D., et al. (2007). Cerebrovascular reactivity in degenerative and vascular dementia: a transcranial doppler study. Eur. Neurol. 58 84–89. 10.1159/000103642
    1. Warnert E. A. H., Rodrigues J. C. L., Burchell A. E., Neumann S., Ratcliffe L. E. K., Manghat N. E., et al. (2016). Is high blood pressure self-protection for the brain? Circ. Res. 119 e140–e151. 10.1161/CIRCRESAHA.116.309493
    1. Wilkinson I. B., Fuchs S. A., Jansen I. M., Spratt J. C., Murray G. D., Cockcroft J. R., et al. (1998). Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J. Hypertens. 16 2079–2084. 10.1097/00004872-199816121-00033
    1. Xie A., Skatrud J. B., Morgan B., Chenuel B., Khayat R., Reichmuth K., et al. (2006). Influence of cerebrovascular function on the hypercapnic ventilatory response in healthy humans. J. Physiol. 577 319–329. 10.1113/jphysiol.2006.110627
    1. Zhong W., Cruickshanks K. J., Schubert C. R., Carlsson C. M., Chappell R. J., Klein B. E., et al. (2014). Pulse wave velocity and cognitive function in older adults. Alzheimer Dis. Assoc. Disord. 28 44–49. 10.1097/WAD.0b013e3182949f06
    1. Zhu Y.-S., Tarumi T., Tseng B. Y., Palmer D. M., Levine B. D., Zhang R. (2013). Cerebral vasomotor reactivity during hypo- and hypercapnia in sedentary elderly and masters athletes. J. Cereb. Blood Flow Metab. 33 1190–1196. 10.1038/jcbfm.2013.66

Source: PubMed

3
Suscribir