Comparative analysis of the visual performance after implantation of the toric implantable collamer lens in stable keratoconus: a 4-year follow-up after sequential procedure (CXL+TICL implantation)

Farideh Doroodgar, Feazollah Niazi, Azad Sanginabadi, Sana Niazi, Alireza Baradaran-Rafii, Cyrus Alinia, Eznollah Azargashb, Mohammad Ghoreishi, Farideh Doroodgar, Feazollah Niazi, Azad Sanginabadi, Sana Niazi, Alireza Baradaran-Rafii, Cyrus Alinia, Eznollah Azargashb, Mohammad Ghoreishi

Abstract

Aims: To report on 4-year postoperative visual performance with the toric implantable collamer lens (TICL) for stable keratoconus after sequential procedure (corneal collagen crosslinking plus TICL implantation).

Methods: Forty eyes of 24 patients with stable keratoconus with myopia between 0.00 and -18.00 dioptres (D) and astigmatism between 1.25 and 8.00 D were evaluated in this prospective interventional study (https://ichgcp.net/clinical-trials-registry/NCT02833649). We evaluated refraction, visual outcomes, astigmatic changes analysed by Alpins vector, contrast sensitivity, aberrometry, modulation transfer functions (MTFs), defocus curve, and operative and postoperative complications.

Results: At 4-year follow-up, 45% had 20/20 vision or better and 100% had 20/40 or better uncorrected visual acuity (UCVA). Vector analysis of refractive astigmatism shows that the surgically induced astigmatism (SIA) (3.20±1.46 D) was not significantly different from the target induced astigmatism (TIA) (3.14±1.42 D) (p=0.620). At 4 years postoperatively, none of the eyes showed a decrease in UCVA, in contrast to 24 eyes in which UCVA was increased by ≥1 lines, with contrast sensitivity and improvement in total aberrations and MTF value at 5 per degree (*p=0.004) after TICL implantation. The cumulative 4-year corneal endothelial cell loss was ≤5%. No patients reported dissatisfaction. At the end of follow-up, the vault was 658±54.33m (range, 500-711) and the intraocular pressure was 11.7±2.08 mm Hg. Occurrences of glare and night-driving troubles diminished after TICL surgery.

Conclusion: The results from this standardised clinical investigation support TICL implantation from clinical and optical viewpoints in patients with stable keratoconus.

Trial registration number: NCT02833649, Pre-results.

Keywords: cross-linking; keratoconus; toric implantable collamer lens (TICL).

Conflict of interest statement

Competing interests: None declared.

Figures

Figure 1
Figure 1
Eligibility assessment procedure. CDVA, corrected distance visual acuity; CXL, corneal collagen crosslinking; TICL, toric implantable collamer lens.
Figure 2
Figure 2
A comparison of preoperative best corrected distance visual acuity and postoperative uncorrected distance visual acuity 4 years after toric implantable collamer lens. UCVA, uncorrected visual acuity.
Figure 3
Figure 3
Postoperative spherical equivalent during follow-up (1 year and 4 years).
Figure 4
Figure 4
Log MAR (logarithm of the minimum angle of resolution) visual acuity defocus curve of +2, +1, 0, −1, −2, −3 and −4 D in a non-cycloplegic condition in the preoperative and postoperative.
Figure 5
Figure 5
(A) Contrast sensitivity under mesopic illumination (3 cd/m2). *Statistically significantly different at a level of 0.05. (B) Contrast sensitivity under photopic illumination (85 cd/m2).
Figure 6
Figure 6
Total and corneal aberrations in 40 eyes with keratoconus before and after undergoing toric implantable collamer lens surgery. *Statistically significantly different at a level of 0.05. RMS, root mean square,
Figure 7
Figure 7
Vectorial display of the difference vector during postoperative follow-up.
Figure 8
Figure 8
MTF pre-TICL and post-TICL implantation.

References

    1. Shafik Shaheen M, El-Kateb M, El-Samadouny MA, et al. . Evaluation of a toric implantable collamer lens after corneal collagen crosslinking in treatment of early-stage keratoconus: 3-year follow-up. Cornea 2014;33:475–80.
    1. Kamiya K, Shimizu K, Kobashi H, et al. . Three-year follow-up of posterior chamber toric phakic intraocular lens implantation for the correction of high myopic astigmatism in eyes with keratoconus. Br J Ophthalmol 2015;99:177–83.
    1. Rabinowitz Y. The genetics of keratoconus. Ophthalmol Clin North Am 2003;16:607–20.
    1. Shetty R, Kaweri L, Pahuja N, et al. . Current review and a simplified “five-point management algorithm” for keratoconus. Indian J Ophthalmol 2015;63:46
    1. Hashemian SJ, Soleimani M, Foroutan A, et al. . Toric implantable collamer lens for high myopic astigmatism in keratoconic patients after six months. Clin Exp Optom 2013;96:225–32.
    1. Alió JL, Peña-García P, Abdulla G F, et al. . Comparison of iris-claw and posterior chamber collagen copolymer phakic intraocular lenses in keratoconus. J Cataract Refract Surg 2014;40:383–94.
    1. Duncan JK, Belin MW, Borgstrom M. Assessing progression of keratoconus: novel tomographic determinants. Eye Vis 2016;3:1
    1. O’Brart DP, Patel P, Lascaratos G, et al. . Corneal cross-linking to halt the progression of keratoconus and corneal ectasia: seven-year follow-up. Am J Ophthalmol 2015;160:1154–63.
    1. Fadlallah A, Dirani A, El Rami H, et al. . Safety and visual outcome of Visian toric ICL implantation after corneal collagen cross-linking in keratoconus. J Refract Surg 2013;29:84–9.
    1. Koh S, Maeda N, Hirohara Y, et al. . Serial measurements of higher-order aberrations after blinking in patients with dry eye. Invest Ophthalmol Vis Sci 2008;49:133–8.
    1. Sanders DR, Doney K, Poco M. United States Food and Drug Administration clinical trial of the Implantable Collamer Lens (ICL) for moderate to high myopia: three-year follow-up. Ophthalmology 2004;111:1683–92.
    1. Gonzalez-Lopez F, Alonso-Santander N, Mompean B, et al. . Visual outcomes in adult amblyopic eyes with moderate myopia after corneal laser surgery versus copolymer phakic intraocular lens implant. J Cataract Refract Surg 2015;41:2513–23.
    1. Jindra LF, Zemon V. Contrast sensitivity testing: a more complete assessment of vision. J Cataract Refract Surg 1989;15:141–8.
    1. Bühren J, Terzi E, Bach M, et al. . Measuring contrast sensitivity under different lighting conditions: comparison of three tests. Optom Vis Sci 2006;83:290–8.
    1. Schlegel Z, Lteif Y, Bains HS, et al. . Total, corneal, and internal ocular optical aberrations in patients with keratoconus. J Refract Surg 2009;25:S951–S957.
    1. Artal P, Berrio E, Guirao A, et al. . Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. J Opt Soc Am A Opt Image Sci Vis 2002;19:137–43.
    1. Llorente L, Barbero S, Cano D, et al. . Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations. J Vis 2004;4:5
    1. Fujikado T, Kuroda T, Ninomiya S, et al. . Age-related changes in ocular and corneal aberrations. Am J Ophthalmol 2004;138:143–6.
    1. Gatinel D, Hoang-Xuan T. Measurement of combined corneal, internal, and total ocular optical quality analysis in anterior segment pathology with the OPD-scan and OPD-station. J Refract Surg 2006;22:S1014–20.
    1. Nakagawa T, Maeda N, Kosaki R, et al. . Higher-order aberrations due to the posterior corneal surface in patients with keratoconus. Invest Ophthalmol Vis Sci 2009;50:2660–5.
    1. Won JB, Kim SW, Kim EK, et al. . Comparison of internal and total optical aberrations for 2 aberrometers: iTrace and OPD scan. Korean J Ophthalmol 2008;22:210–3.
    1. Atchison DA. Anterior corneal and internal contributions to peripheral aberrations of human eyes. J Opt Soc Am A Opt Image Sci Vis 2004;21:355–9.
    1. Sabesan R, Yoon G. Neural compensation for long-term asymmetric optical blur to improve visual performance in keratoconic eyes. Invest Ophthalmol Vis Sci 2010;51:3835–9.
    1. Kelly JE, Mihashi T, Howland HC. Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye. J Vis 2004;4:2
    1. Marcos S, Rosales P, Llorente L, et al. . Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism. Vision Res 2008;48:70–9.
    1. Chen M, Yoon G. Posterior corneal aberrations and their compensation effects on anterior corneal aberrations in keratoconic eyes. Invest Ophthalmol Vis Sci 2008;49:5645–52.
    1. Lamy R, Netto CF, Reis RG, et al. . Effects of corneal cross-linking on contrast sensitivity, visual acuity, and corneal topography in patients with keratoconus. Cornea 2013;32:591–6.
    1. Greenstein SA, Fry KL, Hersh MJ, et al. . Higher-order aberrations after corneal collagen crosslinking for keratoconus and corneal ectasia. J Cataract Refract Surg 2012;38:292–302.
    1. Chen LJ, Chang YJ, Kuo JC, et al. . Metaanalysis of cataract development after phakic intraocular lens surgery. J Cataract Refract Surg 2008;34:1181–200.
    1. Fernandes P, González-Méijome JM, Madrid-Costa D, et al. . Implantable collamer posterior chamber intraocular lenses: a review of potential complications. J Refract Surg 2011;27:765–76.
    1. Kim KH, Shin HH, Kim HM, et al. . Correlation between ciliary sulcus diameter measured by 35 MHz ultrasound biomicroscopy and other ocular measurements. J Cataract Refract Surg 2008;34:632–7.
    1. Alfonso JF, Fernández-Vega L, Lisa C, et al. . Central vault after phakic intraocular lens implantation: correlation with anterior chamber depth, white-to-white distance, spherical equivalent, and patient age. J Cataract Refract Surg 2012;38:46–53.
    1. Montano M, López-Dorantes KP, Ramirez-Miranda A, et al. . Multifocal toric intraocular lens implantation for forme fruste and stable keratoconus. J Refract Surg 2014;30:282–5.
    1. Lim DH, Lyu IJ, Choi SH, et al. . Risk factors associated with night vision disturbances after phakic intraocular lens implantation. Am J Ophthalmol 2014;157:135–41.
    1. Kamiya K, Igarashi A, Shimizu K, et al. . Visual performance after posterior chamber phakic intraocular lens implantation and wavefront-guided laser in situ keratomileusis for low to moderate myopia. Am J Ophthalmol 2012;153:1178–86.
    1. Alfonso JF, Lisa C, Fernández-Vega Cueto L, et al. . Comparison of visual and refractive results of Toric Implantable Collamer Lens with bioptics for myopic astigmatism. Graefes Arch Clin Exp Ophthalmol 2013;251:967–75.
    1. Galvis V, Tello A, Prada AM, et al. . Changing trends in keratoconus management. Cornea 2016;35:e6–e7.
    1. Wong TY, Chan C, Lim L, et al. . Changing indications for penetrating keratoplasty: a newly developed country’s experience. Aust N Z J Ophthalmol 1997;25:145–50.
    1. Bikbova G, Bikbov M. Standard corneal collagen crosslinking versus transepithelial iontophoresis-assisted corneal crosslinking, 24 months follow-up: randomized control trial. Acta Ophthalmol 2016;94:e600–e606.
    1. Seiler TG, Fischinger I, Koller T, et al. . Customized corneal cross-linking: one-year results. Am J Ophthalmol 2016;166:14–21.
    1. Koç M, Uzel MM, Koban Y, et al. . Comparison of results of accelerated corneal cross-linking with hypo-osmolar riboflavin solution performed on corneas thicker and thinner than 400 μm. Cornea 2016;35:151–6.
    1. Uçakhan ÖÖ, Bayraktutar BN, Saglik A. Pediatric corneal collagen cross-linking: long-term follow-up of visual, refractive, and topographic outcomes. Cornea 2016;35:162–8.
    1. Esteve-Taboada JJ, Domínguez-Vicent A, Ferrer-Blasco T, et al. . Posterior chamber phakic intraocular lenses to improve visual outcomes in keratoconus patients. J Cataract Refract Surg 2017;43:115–30.
    1. Kamiya K, Shimizu K, Ando W, et al. . Phakic toric Implantable Collamer Lens implantation for the correction of high myopic astigmatism in eyes with keratoconus. J Refract Surg 2008;24:840–2.
    1. Alfonso JF, Palacios A, Montés-Micó R. Myopic phakic STAAR collamer posterior chamber intraocular lenses for keratoconus. J Refract Surg 2008;24:867–74.
    1. Alfonso JF, Fernández-Vega L, Lisa C, et al. . Collagen copolymer toric posterior chamber phakic intraocular lens in eyes with keratoconus. J Cataract Refract Surg 2010;36:906–16.
    1. Kamiya K, Shimizu K, Kobashi H, et al. . Clinical outcomes of posterior chamber toric phakic intraocular lens implantation for the correction of high myopic astigmatism in eyes with keratoconus: 6-month follow-up. Graefes Arch Clin Exp Ophthalmol 2011;249:1073–80.
    1. Kymionis GD, Grentzelos MA, Karavitaki AE, et al. . Combined corneal collagen cross-linking and posterior chamber toric implantable collamer lens implantation for keratoconus. Ophthalmic Surg Lasers Imaging 2011;42 Online:e22-5
    1. Coskunseven E, Onder M, Kymionis GD, et al. . Combined Intacs and posterior chamber toric implantable Collamer lens implantation for keratoconic patients with extreme myopia. Am J Ophthalmol 2007;144:387–9.
    1. Fernandez-Vega L, Alfonso J, Madrid-Costa D, et al. . Intra-stromal corneal ring segment and posterior chamber phakic intraocular lens implantation for keratoconus correction. Invest Ophthalmol Vis 2010;51:3475–5.
    1. Navas A, Tapia-Herrera G, Jaimes M, et al. . Implantable collamer lenses after intracorneal ring segments for keratoconus. Int Ophthalmol 2012;32:423–9.
    1. Coşkunseven E, Sharma DP, Jankov MR, et al. . Collagen copolymer toric phakic intraocular lens for residual myopic astigmatism after intrastromal corneal ring segment implantation and corneal collagen crosslinking in a 3-stage procedure for keratoconus. J Cataract Refract Surg 2013;39:722–9.
    1. Iovieno A, Guglielmetti S, Capuano V, et al. . Correction of postkeratoplasty ametropia in keratoconus patients using a toric implantable Collamer lens. Eur J Ophthalmol 2013;23:361–7.
    1. Kurian M, Nagappa S, Bhagali R, et al. . Visual quality after posterior chamber phakic intraocular lens implantation in keratoconus. J Cataract Refract Surg 2012;38:1050–7.
    1. Ali M, Kamiya K, Shimizu K, et al. . Clinical evaluation of corneal biomechanical parameters after posterior chamber phakic intraocular lens implantation. Cornea 2014;33:470–4.
    1. Antonios R, Dirani A, Fadlallah A, et al. . Safety and visual outcome of visian toric ICL implantation after corneal collagen cross-linking in keratoconus: up to 2 years of follow-up. J Ophthalmol 2015;2015:1–8.
    1. Dirani A, Fadlallah A, Khoueir Z, et al. . Visian toric ICL implantation after intracorneal ring segments implantation and corneal collagen crosslinking in keratoconus. Eur J Ophthalmol 2014;24:338–44.
    1. Kummelil MK, Hemamalini MS, Bhagali R, et al. . Toric implantable collamer lens for keratoconus. Indian J Ophthalmol 2013;61:456
    1. Park SW, Kim MK, Wee WR, et al. . Partial visual rehabilitation using a toric implantable collamer lens in a patient with keratoconus: a case report with 20 months of follow-up. Korean J Ophthalmol 2013;27:211–4.
    1. Camoriano GD, Aman-Ullah M, Purba MK, et al. . Toric collagen copolymer phakic intraocular lens to correct myopic astigmatism in eyes with pellucid marginal degeneration. J Cataract Refract Surg 2012;38:256–61.
    1. Emara KE, Al Abdulsalam O, Al Habash A. Implantation of spherical and toric copolymer phackic intraocular lens to manage amblyopia due to anisometropic hyperopia and myopia in pediatric patients. J Cataract Refract Surg 2015;41:2458–65.
    1. Prakash G, Avadhani K, Kalliath J, et al. . Implantable collamer lens in a case of corneal scar with anisometropic amblyopia in an adult: an expanded indication. BMJ Case Rep 2015;2015:bcr2014208862
    1. Alfonso JF, Lisa C, Fernández-Vega L, et al. . Intrastromal corneal ring segments and posterior chamber phakic intraocular lens implantation for keratoconus correction. J Cataract Refract Surg 2011;37:706–13.

Source: PubMed

3
Suscribir