Cripto-1 as a novel therapeutic target for triple negative breast cancer

Nadia P Castro, Natalie D Fedorova-Abrams, Anand S Merchant, Maria Cristina Rangel, Tadahiro Nagaoka, Hideaki Karasawa, Malgorzata Klauzinska, Stephen M Hewitt, Kajal Biswas, Shyam K Sharan, David S Salomon, Nadia P Castro, Natalie D Fedorova-Abrams, Anand S Merchant, Maria Cristina Rangel, Tadahiro Nagaoka, Hideaki Karasawa, Malgorzata Klauzinska, Stephen M Hewitt, Kajal Biswas, Shyam K Sharan, David S Salomon

Abstract

Triple-negative breast cancer (TNBC) presents the poorest prognosis among the breast cancer subtypes and no current standard therapy. Here, we performed an in-depth molecular analysis of a mouse model that establishes spontaneous lung metastasis from JygMC(A) cells. These primary tumors resembled the triple-negative breast cancer (TNBC) both phenotypically and molecularly. Morphologically, primary tumors presented both epithelial and spindle-like cells but displayed only adenocarcinoma-like features in lung parenchyma. The use of laser-capture microdissection combined with Nanostring mRNA and microRNA analysis revealed overexpression of either epithelial and miRNA-200 family or mesenchymal markers in adenocarcinoma and mesenchymal regions, respectively. Cripto-1, an embryonic stem cell marker, was present in spindle-like areas and its promoter showed activity in primary tumors. Cripto-1 knockout by the CRISPR-Cas9 system inhibited tumor growth and pulmonary metastasis. Our findings show characterization of a novel mouse model that mimics the TNBC and reveal Cripto-1 as a TNBC target hence may offer alternative treatment strategies for TNBC.

Trial registration: ClinicalTrials.gov NCT01151449.

Keywords: Cripto-1; Notch4; epithelial-mesenchymal plasticity; mouse model; triple-negative breast cancer.

Conflict of interest statement

CONFLICTS OF INTEREST

No potential conflicts of interest disclosed

Figures

Figure 1. Orthotopic metastasis of JygMC(A) cells…
Figure 1. Orthotopic metastasis of JygMC(A) cells and epithelial mesenchymal characterization in vitro
Lung metastasis by orthotopic cell injection in Balb/C nude mice. B. Representation of bioluminescent imaging of animals. Animals imaged at day 15, 22, 29, 42 and 52 post JygMC(A)-GFP/Luc cell injection. Ex-vivo imaging of lymph nodes and lung metastases. C. Immunofluorescence of luminal epithelial and basal mesenchymal markers in JygMC(A) parental cells. Epithelial marker: CDH1 (Alexa 488), luminal marker: CK18 (Alexa 488), basal marker: K5 and K14 (Alexa 488) and mesenchymal marker: Vimentin (Alexa 594). Nuclear staining in blue (DAPI). Scale bars: 200 μm.
Figure 2. JygMC(A) mammary primary tumor molecular…
Figure 2. JygMC(A) mammary primary tumor molecular phenotype, histology and EMT-MET plasticity
Analysis of normal adjacent tissue by immunohistochemistry of ERα A. PR B. and HER2/neu staining of a wild-type MMTV-Neu/Her2 tumor C. Analysis of primary mammary tumor tissue of ERα D. PR E. and HER2/neu F. Positive antibody signals are shown in brown, and the hematoxylin counterstain is shown in blue. Scale bars: 200μm. G. Histological tumor classification. Primary tumor possesses two types of cells: undifferentiated adenocarcinoma type (green line) and areas composed of atypical spindle-shaped cells suggesting EMT (yellow line). Lung metastasis morphology typical of the epithelial primary adenocarcinoma suggesting MET is present in the lung parenchyma. Lymph node tissue (red line) showing areas of atypical spindle-shaped cells (yellow line). Shown are hematoxylin and eosin staining. Scale bars: 100 μm.
Figure 3. Gene expression profiles of laser…
Figure 3. Gene expression profiles of laser capture microdissected tumor progression samples through unsupervised hierarchical clustering
Primary tumor adenocarcinoma versus EMT-like areas; B. Primary tumor adenocarcinoma versus lung metastasis; C. Primary tumor EMT-like areas versus lung metastasis; D. Primary tumor, lung metastasis, normal mammary gland and normal lung parenchyma. Each row represents a single gene and each column a single sample. The red color indicates up-regulation, the green color indicates down-regulation, and the black color indicates no change in expression level compared with the reference sample. The gray color indicates that no intensity was detected. EMT: epithelial-to-mesenchymal transition.
Figure 4. Relevant pathways, gene and protein…
Figure 4. Relevant pathways, gene and protein expression in primary tumors and lung metastasis and similarities with human breast cancer
Enriched pathways in primary mammary tumors. B. Enriched pathways in lung metastasis. C. Common seven genes between Nanostring and microarray analysis D. BMP4 and CDH1 protein expression. E. Differentially expressed genes between JygMC(A) primary mammary tumors and/or lung metastasis and human breast cancer subtypes and/or metastasis datasets.
Figure 5. miRNA regulation and Notch4 expression…
Figure 5. miRNA regulation and Notch4 expression in vitro and in vivo
mRNA and microRNA network in JygMC(A) primary mammary tumor model B. Immunofluorescence staining of Notch4 in adherent JygMC(A) parental cell line C. Immunohistochemistry of Notch4 in primary tumor derived from JygMC(A)-GFP/Luc cells and lung metastasis. Brown staining represents positivity. Arrows indicate nuclear staining. D.Notch4 gene expression throughout microarray samples.
Figure 6. In vitro and In vivo…
Figure 6. In vitro and In vivo effects of the gamma-secretase inhibitor RO4929097 in the JygMC(A) cell line and mouse model
Proliferation assay. JygMC(A)-GFP/Luc cells were seeded in 12-well dishes in triplicate at 5×103cells/well and cultured for 24, 48 and 72 hrs. Cells were then harvested and counted. Data are representative of two independent experiments in triplicate ±SD, *P < 0.0001, as compared to control vehicle-treated cells. B. Colony formation assay in soft agar. A total of 1.5×104cells were cultured for 10 days. Colonies were stained with NitroBlue Tetrazolium and quantified using Gelcount. Data are representative of two independent experiments in triplicate ±SD, *P < 0.005, as compared to control vehicle-treated cells. C. Boyden chamber migration and D. invasion assays. A total of 4×104cells in serum-free medium were seeded on the top chambers, and 2% or 5% FBS-containing medium was placed in the bottom wells as a chemoattractant. Cells were incubated for 24hrs. Cells that migrated/invaded through the membrane were stained and counted using a light microscope. Data are expressed as the average of cells in ten fields from each membrane (20X). Data are representative of two independent experiments in duplicate ±SD, *P < 0.01 and **P < 0.001, as compared to control vehicle-treated cells. E. Sphere formation assay. A total of 10,000 cells were cultured for 10 days on non-adherent plates and treated with different concentrations of RO4929097. Data are representative of two independent experiments in sixplicate ±SD, *P < 0.001, as compared to control vehicle-treated cells. F. Nude mice bearing mammary tumors (n = 10/group) were dosed orally following the schedule of 60mg/Kg every other week (7days on/7days off) or vehicle for 4 weeks and primary tumor volumes are represented in the graph, ±SD, *P < 0.05, as compared to control vehicle-treated animals. G. Number of pulmonary nodules per animal in control vehicle-treated and RO4929097-treated animals (*P < 0.05, one-sided values; Wilcoxon rank-sum test).
Figure 7. Mouse Cripto-1 promoter and Cripto-1…
Figure 7. Mouse Cripto-1 promoter and Cripto-1 knockout in JygMC(A) cell line
Representation of bioluminescent imaging on animals injected bilaterally into the fourth mammary gland with JygMC(A) cells containing the mouse Cripto-1 promoter. Animals were imaged at day 8, 16, 19 and 23-post cell injection. B.In situ detection of Cripto-1 promoter activity in primary tumor tissue sections. C. H&E of the primary tumor tissue sections depicted in B. showing carcinoma areas (green) and EMT-like areas (yellow) and high magnification (20X). Scale bars: 3mm and 200μm. D. Proliferation assay. JygMC(A) cells were seeded in 12-well dishes in triplicate at 5x104cells/well and cultured for 24, 48 and 72 hrs. Cells were then harvested and counted. Data are representative of two independent experiments in triplicate ±SD, *P < 0.0002, as compared to control cells. E. Average of primary tumor volumes are represented in the graph on JygCr-1KO and JygMC(A) parental cells (n = 7 animals/group ±SD, *P < 0.01 and **P < 0.0001, as compared to control animals). F. Number of pulmonary nodules per animal in JygCr-1KO and JygMC(A) parental animals (*P < 0.05, one-sided values; Wilcoxon rank-sum test).

References

    1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.
    1. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. The New England journal of medicine. 2010;363:1938–1948.
    1. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100:8418–8423.
    1. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–1428.
    1. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell stem cell. 2014;14:275–291.
    1. Bianco C, Rangel MC, Castro NP, Nagaoka T, Rollman K, Gonzales M, Salomon DS. Role of Cripto-1 in stem cell maintenance and malignant progression. Am J Pathol. 2010;177:532–540.
    1. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–715.
    1. D'Amato NC, Ostrander JH, Bowie ML, Sistrunk C, Borowsky A, Cardiff RD, Bell K, Young LJ, Simin K, Bachelder RE, Delrow J, Dawson A, Yee LD, Mrozek K, Clay TM, Osada T, et al. Evidence for phenotypic plasticity in aggressive triple-negative breast cancer: human biology is recapitulated by a novel model system. PLoS One. 2012;7:e45684.
    1. Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, Lim E, Tam WL, Ni M, Chen Y, Mai J, Shen H, Hu DZ, Adoro S, Hu B, Song M, et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature. 2014;508:103–107.
    1. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3:895–902.
    1. Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010;15:117–134.
    1. Watanabe K, Nagaoka T, Lee JM, Bianco C, Gonzales M, Castro NP, Rangel MC, Sakamoto K, Sun Y, Callahan R, Salomon DS. Enhancement of Notch receptor maturation and signaling sensitivity by Cripto-1. The Journal of cell biology. 2009;187:343–353.
    1. Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer. 2003;3:756–767.
    1. Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, Bundred NJ, Clarke RB. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 2010;70:709–718.
    1. Stoeck A, Lejnine S, Truong A, Pan L, Wang H, Zang C, Yuan J, Ware C, MacLean J, Garrett-Engele PW, Kluk M, Laskey J, Haines BB, Moskaluk C, Zawel L, Fawell S, et al. Discovery of Biomarkers Predictive of GSI Response in Triple-Negative Breast Cancer and Adenoid Cystic Carcinoma. Cancer Discov. 2014;4:1154–1167.
    1. Hiroishi S, Morimoto J, Taniguchi Y, Mori H. Multiple metastases of mammary carcinoma cell lines isolated from feral mouse. Cancer Lett. 1995;92:83–86.
    1. Azuma H, Ehata S, Miyazaki H, Watabe T, Maruyama O, Imamura T, Sakamoto T, Kiyama S, Kiyama Y, Ubai T, Inamoto T, Takahara S, Itoh Y, Otsuki Y, Katsuoka Y, Miyazono K, et al. Effect of Smad7 expression on metastasis of mouse mammary carcinoma JygMC(A) cells. J Natl Cancer Inst. 2005;97:1734–1746.
    1. Sarkar NH, Haga S, Lehner AF, Zhao W, Imai S, Moriwaki K. Insertional mutation of int protooncogenes in the mammary tumors of a new strain of mice derived from the wild in China: normal- and tumor-tissue-specific expression of int-3 transcripts. Virology. 1994;203:52–62.
    1. Gallahan D, Callahan R. The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4) Oncogene. 1997;14:1883–1890.
    1. Tsai JH, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27:2192–2206.
    1. Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res. 2007;13:7003–7011.
    1. Gao H, Chakraborty G, Lee-Lim AP, Mo Q, Decker M, Vonica A, Shen R, Brogi E, Brivanlou AH, Giancotti FG. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell. 2012;150:764–779.
    1. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P, Varambally S, Ghosh D, Chinnaiyan AM. Oncomine 3. 0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 2007;9:166–180.
    1. Tabchy A, Valero V, Vidaurre T, Lluch A, Gomez H, Martin M, Qi Y, Barajas-Figueroa LJ, Souchon E, Coutant C, Doimi FD, Ibrahim NK, Gong Y, Hortobagyi GN, Hess KR, Symmans WF, et al. Evaluation of a 30-gene paclitaxel, fluorouracil, doxorubicin, and cyclophosphamide chemotherapy response predictor in a multicenter randomized trial in breast cancer. Clin Cancer Res. 2010;16:5351–5361.
    1. Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A, Vidaurre T, Holmes F, Souchon E, Wang H, Martin M, Cotrina J, Gomez H, Hubbard R, Chacon JI, Ferrer-Lozano J, et al. A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. Jama. 2011;305:1873–1881.
    1. Gluck S, Ross JS, Royce M, McKenna EF, Jr, Perou CM, Avisar E, Wu L. TP53 genomics predict higher clinical and pathologic tumor response in operable early-stage breast cancer treated with docetaxel-capecitabine +/− trastuzumab. Breast Cancer Res Treat. 2012;132:781–791.
    1. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, Viale G, Delorenzi M, Zhang Y, d'Assignies MS, Bergh J, Lidereau R, Ellis P, Harris AL, Klijn JG, Foekens JA, et al. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res. 2007;13:3207–3214.
    1. Cianfrocca M, Goldstein LJ. Prognostic and predictive factors in early-stage breast cancer. The oncologist. 2004;9:606–616.
    1. Radvanyi L, Singh-Sandhu D, Gallichan S, Lovitt C, Pedyczak A, Mallo G, Gish K, Kwok K, Hanna W, Zubovits J, Armes J, Venter D, Hakimi J, Shortreed J, Donovan M, Parrington M, et al. The gene associated with trichorhinophalangeal syndrome in humans is overexpressed in breast cancer. Proc Natl Acad Sci U S A. 2005;102:11005–11010.
    1. Daves MH, Hilsenbeck SG, Lau CC, Man TK. Meta-analysis of multiple microarray datasets reveals a common gene signature of metastasis in solid tumors. BMC medical genomics. 2011;4:56.
    1. Volinia S, Nuovo G, Drusco A, Costinean S, Abujarour R, Desponts C, Garofalo M, Baffa R, Aeqilan R, Maharry K, Garzon ME, Di Leva G, Gasparini P, Dama P, Marchesini J, Galasso M, et al. Pluripotent Stem Cell miRNAs and Metastasis in Invasive Breast Cancer. J Natl Cancer Inst. 2014:106.
    1. Gibbons DL, Lin W, Creighton CJ, Rizvi ZH, Gregory PA, Goodall GJ, Thilaganathan N, Du L, Zhang Y, Pertsemlidis A, Kurie JM. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 2009;23:2140–2151.
    1. Chen F, Hou SK, Fan HJ, Liu YF. MiR-15a-16 represses Cripto and inhibits NSCLC cell progression. Molecular and cellular biochemistry. 2014;391:11–19.
    1. Park KS, Raffeld M, Moon YW, Xi L, Bianco C, Pham T, Lee LC, Mitsudomi T, Yatabe Y, Okamoto I, Subramaniam D, Mok T, Rosell R, Luo J, Salomon DS, Wang Y, et al. CRIPTO1 expression in EGFR-mutant NSCLC elicits intrinsic EGFR-inhibitor resistance. J Clin Invest. 2014;124:3003–3015.
    1. Wang Z, Li Y, Kong D, Ahmad A, Banerjee S, Sarkar FH. Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett. 2010;292:141–148.
    1. Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL, Weinberg RA. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 2011;145:926–940.
    1. Mancino M, Strizzi L, Wechselberger C, Watanabe K, Gonzales M, Hamada S, Normanno N, Salomon DS, Bianco C. Regulation of human Cripto-1 gene expression by TGF-beta1 and BMP-4 in embryonal and colon cancer cells. J Cell Physiol. 2008;215:192–203.
    1. Takao K, Miyakawa T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2015;112:1167–1172.
    1. Castro NP, Osorio CA, Torres C, Bastos EP, Mourao-Neto M, Soares FA, Brentani HP, Carraro DM. Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma. Breast Cancer Res. 2008;10:R87.
    1. Bianco C, Castro NP, Baraty C, Rollman K, Held N, Rangel MC, Karasawa H, Gonzales M, Strizzi L, Salomon DS. Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells. J Cell Physiol. 2013;228:1174–1188.
    1. Strizzi L, Bianco C, Normanno N, Seno M, Wechselberger C, Wallace-Jones B, Khan NI, Hirota M, Sun Y, Sanicola M, Salomon DS. Epithelial mesenchymal transition is a characteristic of hyperplasias and tumors in mammary gland from MMTV-Cripto-1 transgenic mice. J Cell Physiol. 2004;201:266–276.
    1. Spike BT, Kelber JA, Booker E, Kalathur M, Rodewald R, Lipianskaya J, La J, He M, Wright T, Klemke R, Wahl GM, Gray PC. CRIPTO/GRP78 signaling maintains fetal and adult mammary stem cells ex vivo. Stem cell reports. 2014;2:427–439.
    1. de Castro NP, Rangel MC, Nagaoka T, Salomon DS, Bianco C. Cripto-1: an embryonic gene that promotes tumorigenesis. Future Oncol. 2010;6:1127–1142.
    1. Teo AK, Ali Y, Wong KY, Chipperfield H, Sadasivam A, Poobalan Y, Tan EK, Wang ST, Abraham S, Tsuneyoshi N, Stanton LW, Dunn NR. Activin and BMP4 synergistically promote formation of definitive endoderm in human embryonic stem cells. Stem Cells. 2012;30:631–642.
    1. Taube JH, Malouf GG, Lu E, Sphyris N, Vijay V, Ramachandran PP, Ueno KR, Gaur S, Nicoloso MS, Rossi S, Herschkowitz JI, Rosen JM, Issa JP, Calin GA, Chang JT, Mani SA. Epigenetic silencing of microRNA-203 is required for EMT and cancer stem cell properties. Scientific reports. 2013;3:2687.
    1. Nagamatsu I, Onishi H, Matsushita S, Kubo M, Kai M, Imaizumi A, Nakano K, Hattori M, Oda Y, Tanaka M, Katano M. NOTCH4 is a potential therapeutic target for triple-negative breast cancer. Anticancer Res. 2014;34:69–80.
    1. D'Angelo RC, Ouzounova M, Davis A, Choi D, Tchuenkam SM, Kim G, Luther T, Quraishi AA, Senbabaoglu Y, Conley SJ, Clouthier SG, Hassan KA, Wicha MS, Korkaya H. Notch Reporter Activity in Breast Cancer Cell Lines Identifies a Subset of Cells with Stem Cell Activity. Mol Cancer Ther. 2015
    1. Azzam DJ, Zhao D, Sun J, Minn AJ, Ranganathan P, Drews-Elger K, Han X, Picon-Ruiz M, Gilbert CA, Wander SA, Capobianco AJ, El-Ashry D, Slingerland JM. Triple negative breast cancer initiating cell subsets differ in functional and molecular characteristics and in gamma-secretase inhibitor drug responses. EMBO molecular medicine. 2013;5:1502–1522.
    1. Schott AF, Landis MD, Dontu G, Griffith KA, Layman RM, Krop I, Paskett LA, Wong H, Dobrolecki LE, Lewis MT, Froehlich AM, Paranilam J, Hayes DF, Wicha MS, Chang JC. Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin Cancer Res. 2013;19:1512–1524.
    1. Shih Ie M, Wang TL. Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res. 2007;67:1879–1882.
    1. Roberts ES, Malstrom SE, Dreher KL. in situ pulmonary localization of air pollution particle-induced oxidative stress. Journal of toxicology and environmental health Part A. 2007;70:1929–1935.
    1. Golubeva Y, Salcedo R, Mueller C, Liotta LA, Espina V. Laser capture microdissection for protein and NanoString RNA analysis. Methods Mol Biol. 2013;931:213–257.
    1. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nature protocols. 2013;8:2281–2308.

Source: PubMed

3
Suscribir