Microneedles: Characteristics, Materials, Production Methods and Commercial Development

Amina Tucak, Merima Sirbubalo, Lamija Hindija, Ognjenka Rahić, Jasmina Hadžiabdić, Kenan Muhamedagić, Ahmet Čekić, Edina Vranić, Amina Tucak, Merima Sirbubalo, Lamija Hindija, Ognjenka Rahić, Jasmina Hadžiabdić, Kenan Muhamedagić, Ahmet Čekić, Edina Vranić

Abstract

Although transdermal drug delivery systems (DDS) offer numerous benefits for patients, including the avoidance of both gastric irritation and first-pass metabolism effect, as well as improved patient compliance, only a limited number of active pharmaceutical ingredients (APIs) can be delivered accordingly. Microneedles (MNs) represent one of the most promising concepts for effective transdermal drug delivery that penetrate the protective skin barrier in a minimally invasive and painless manner. The first MNs were produced in the 90s, and since then, this field has been continually evolving. Therefore, different manufacturing methods, not only for MNs but also MN molds, are introduced, which allows for the cost-effective production of MNs for drug and vaccine delivery and even diagnostic/monitoring purposes. The focus of this review is to give a brief overview of MN characteristics, material composition, as well as the production and commercial development of MN-based systems.

Keywords: coating techniques; materials; microneedle arrays; microneedles; microscale fabrication techniques; transdermal drug delivery.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 2
Figure 2
A schematic representation of drug release methods with five different types of MNs. (A) Hollow MNs pierce the skin (left) and provide the release of liquid drug formulation through the needle lumen (right). (B) Solid MNs pretreat the skin to create transient microchannels skin (left) and increase the permeability of the drug that is then, applied in the form of a transdermal patch, solution, cream, or gel (right). (C) Coated MNs with drug formulation (left) enable the fast dissolution of the coated drug in the skin (right). (D) Dissolving MNs are prepared from polymer and embedded drug in the MN matrix (left) to provide the bolus or controlled delivery of a drug (right). (E) Hydrogel MNs poke the skin, uptake interstitial fluids (right), and induce diffusion of the drug from the patch through the swollen MNs (left).
Figure 3
Figure 3
Manufacturing of MNs using photolithography [117]. (a) Deposition: As a substrate, Si wafer is exposed to steam or humidified to produce the wafer with an oxide coating. Then, the photoresistive material is spin-coated onto a substrate. (b) Patterning: Mask guided UV radiation is exposed to the photoresistive material. (c) Etching: soluble resist material is removed and SiO2 film etched. (d) Photoresist removal: in this step, the photoresist layer is removed.
Figure 1
Figure 1
Comparison of drug delivery systems (DDS) based on (1) the conventional topical formulation, (2) microneedles (MNs), and (3) hypodermal injection.
Figure 4
Figure 4
Principle of manufacturing of MNs (in-plane and out-of-plane) and MN molds by the laser cutting.
Figure 5
Figure 5
The principle of metal MN fabrication using twisted light with a spin by Omatsu et al. (Modified from [96]).
Figure 6
Figure 6
Left: MN production with micromolding (left) consisted of (a) pouring the liquid formulation, (b) vacuum degasification, (c) drying and (d) removal of MNs from the mold. Right: Atomized spraying to fill molds.
Figure 7
Figure 7
The principle of droplet-born air blowing (DAB) methods (Modified from [123]).
Figure 8
Figure 8
Fabrication of MNs by Fused deposition modelling (FDM) methods, followed by etching in alkaline solution [103,104].
Figure 9
Figure 9
Coating techniques for MNs. (a) gas-jet drying; (b) spray drying; (c) electrohydrodynamic atomization (EHDA) processes; (d) ink-jet printing.
Figure 10
Figure 10
Current MN devices. (A) Soluvia®, (B) MicronJet®600, (C) Microstructured Transdermal System®, (D) QtryptaTM, (E) SCS Microinjector®, (F) Microinfusor®, (G) MicroCor®, (H) Bullfrog® Micro-Infusion Device.

References

    1. Scheuplein R.J., Blank I.H. Permeability of the skin. Physiol. Rev. 1971;51:702–747. doi: 10.1152/physrev.1971.51.4.702.
    1. Morrow D.I.J., McCarron P.A., Woolfson A.D., Donnelly R.F. Innovative Strategies for Enhancing Topical and Transdermal Drug Delivery. Open Drug Deliv. J. 2007;1:36–59. doi: 10.2174/1874126600701010036.
    1. Bourget L. Über die Resorption der Salicylsäure durch die Haut und die Behandlung des akuten Gelenkrheumatismus. Ther. Monatsh. 1893;7:531–539.
    1. Surber C., Smith E.W. The mystical effects of dermatological vehicles. Dermatology. 2005;210:157–168. doi: 10.1159/000082572.
    1. Blank I.H. Further observations on factors which influence the water content of the stratum corneum. J. Investig. Dermatol. 1953;21:259–271. doi: 10.1038/jid.1953.100.
    1. Scheuplein R.J. Mechanism of percutaneous absorption. II. Transient diffusion and the relative importance of various routes of skin penetration. J. Invest. Dermatol. 1967;48:79–88. doi: 10.1038/jid.1967.11.
    1. Thomas B.J., Finnin B.C. The transdermal revolution. Drug Discov. Today. 2004;9:697–703. doi: 10.1016/S1359-6446(04)03180-0.
    1. Cheung K., Das D.B. Microneedles for drug delivery: Trends and progress. Drug Deliv. 2016;23:2338–2354. doi: 10.3109/10717544.2014.986309.
    1. Mooney K., McElnay J.C., Donnelly R.F. Children’s views on microneedle use as an alternative to blood sampling for patient monitoring. Int. J. Pharm. Pract. 2014;22:335–344. doi: 10.1111/ijpp.12081.
    1. Park J.H., Allen M.G., Prausnitz M.R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control. Release. 2005;104:51–66. doi: 10.1016/j.jconrel.2005.02.002.
    1. Yadav J.D., Vaidya K.A., Kulkarni P.R., Raut R.A. Microneedles: Promising technique for transdermal drug delivery. Int. J. Pharma Bio Sci. 2011;2:684–708.
    1. Cross S., Roberts M. Physical Enhancement of Transdermal Drug Application: Is Delivery Technology Keeping up with Pharmaceutical Development? Curr. Drug Deliv. 2004;1:81–92. doi: 10.2174/1567201043480045.
    1. Khafagy E.S., Morishita M., Onuki Y., Takayama K. Current challenges in non-invasive insulin delivery systems: A comparative review. Adv. Drug Deliv. Rev. 2007;59:1521–1546. doi: 10.1016/j.addr.2007.08.019.
    1. Oh J.H., Park H.H., Do K.Y., Han M., Hyun D.H., Kim C.G., Kim C.H., Lee S.S., Hwang S.J., Shin S.C., et al. Influence of the delivery systems using a microneedle array on the permeation of a hydrophilic molecule, calcein. Eur. J. Pharm. Biopharm. 2008;69:1040–1045. doi: 10.1016/j.ejpb.2008.02.009.
    1. Davidson A., Al-Qallaf B., Das D.B. Transdermal drug delivery by coated microneedles: Geometry effects on effective skin thickness and drug permeability. Chem. Eng. Res. Des. 2008;86:1196–1206. doi: 10.1016/j.cherd.2008.06.002.
    1. Gratieri T., Alberti I., Lapteva M., Kalia Y.N. Next generation intra- and transdermal therapeutic systems: Using non- and minimally-invasive technologies to increase drug delivery into and across the skin. Eur. J. Pharm. Sci. 2013;50:609–622. doi: 10.1016/j.ejps.2013.03.019.
    1. Global Transdermal Skin Patches Market Analysis to 2030— | Business Wire. [(accessed on 22 September 2020)]; Available online: .
    1. Larrañeta E., Lutton R.E.M., Woolfson A.D., Donnelly R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R Rep. 2016;104:1–32. doi: 10.1016/j.mser.2016.03.001.
    1. Torbica S., Vuleta G., Ignjatović N., Uskoković D. Polymeric nanoparticles: Carriers for transdermal drug delivery. Teh.-Novi. Mater. 2009;18:1–14.
    1. Donnelly R.F., Singh T.R.R., Morrow D.I.J., Woolfson A.D. Microneedle-Mediated and Intradermal Drug Delivery. John Wiley & Sons, Ltd.; Chichester, UK: 2012.
    1. Milewski M., Stinchcomb A.L. Vehicle composition influence on the microneedle-enhanced transdermal flux of naltrexone hydrochloride. Pharm. Res. 2011;28:124–134. doi: 10.1007/s11095-010-0191-x.
    1. Gill H.S., Prausnitz M.R. Coated microneedles for transdermal delivery. J. Control. Release. 2007;117:227–237. doi: 10.1016/j.jconrel.2006.10.017.
    1. Raphael A.P., Garrastazu G., Sonvico F., Prow T.W. Formulation design for topical drug and nanoparticle treatment of skin disease. Ther. Deliv. 2015;6:197–216. doi: 10.4155/tde.14.106.
    1. Geerligs M. Skin Layer Mechanics. TU Eindhoven; Eindhoven, The Netherlands: 2010.
    1. Martanto W., Davis S.P., Holiday N.R., Wang J., Gill H.S., Prausnitz M.R. Transdermal delivery of insulin using microneedles in vivo. Pharm. Res. 2004;21:947–952. doi: 10.1023/B:PHAM.0000029282.44140.2e.
    1. Han T., Das D.B. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: A review. Eur. J. Pharm. Biopharm. 2015;89:312–328. doi: 10.1016/j.ejpb.2014.12.020.
    1. Yang Y., Kalluri H., Banga A.K. Effects of chemical and physical enhancement techniques on transdermal delivery of cyanocobalamin (vitamin B12) in vitro. Pharmaceutics. 2011;3:474–484. doi: 10.3390/pharmaceutics3030474.
    1. Nandagopal M.S.G., Antony R., Rangabhashiyam S., Sreekumar N., Selvaraju N. Overview of microneedle system: A third generation transdermal drug delivery approach. Microsyst. Technol. 2014;20:1249–1272. doi: 10.1007/s00542-014-2233-5.
    1. Akhtar N. Microneedles: An innovative approach to transdermal delivery- a review. Int. J. Pharm. Pharm. Sci. 2014;6:18–25.
    1. Henry S., McAllister D.V., Allen M.G., Prausnitz M.R. Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci. 1998;87:922–925. doi: 10.1021/js980042+.
    1. Kim Y.C., Park J.H., Prausnitz M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 2012;64:1547–1568. doi: 10.1016/j.addr.2012.04.005.
    1. Donnelly R.F., Majithiya R., Singh T.R.R., Morrow D.I.J., Garland M.J., Demir Y.K., Migalska K., Ryan E., Gillen D., Scott C.J., et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm. Res. 2011;28:41–57. doi: 10.1007/s11095-010-0169-8.
    1. Vučen S.R., Vuleta G., Crean A.M., Moore A.C., Ignjatović N., Uskoković D. Improved percutaneous delivery of ketoprofen using combined application of nanocarriers and silicon microneedles. J. Pharm. Pharmacol. 2013;65:1451–1462. doi: 10.1111/jphp.12118.
    1. Prausnitz M.R. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 2004;56:581–587. doi: 10.1016/j.addr.2003.10.023.
    1. Paik S.J., Byun S., Lim J.M., Park Y., Lee A., Chung S., Chang J., Chun K., Cho D. In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems. Sens. Actuators A Phys. 2004;114:276–284. doi: 10.1016/j.sna.2003.12.029.
    1. Hong X., Wu Z., Chen L., Wu F., Wei L., Yuan W. Hydrogel Microneedle Arrays for Transdermal Drug Delivery. Nano-Micro Lett. 2014;6:191–199. doi: 10.1007/BF03353783.
    1. Banga A.K. Transdermal and Intradermal Delivery of Therapeutic Agents: Application of Physical Technologies. 1st ed. CRC Press; Boca Raton, FL, USA: 2011.
    1. Davis S.P., Martanto W., Allen M.G., Prausnitz M.R. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans. Biomed. Eng. 2005;52:909–915. doi: 10.1109/TBME.2005.845240.
    1. Martanto W., Moore J.S., Couse T., Prausnitz M.R. Mechanism of fluid infusion during microneedle insertion and retraction. J. Control. Release. 2006;112:357–361. doi: 10.1016/j.jconrel.2006.02.017.
    1. Wang P.M., Cornwell M., Prausnitz M.R. Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol. Ther. 2005;7:131–141. doi: 10.1089/dia.2005.7.131.
    1. Bal S.M., Ding Z., Van Riet E., Jiskoot W., Bouwstra J.A. Advances in transcutaneous vaccine delivery: Do all ways lead to Rome? J. Control. Release. 2010;148:266–282. doi: 10.1016/j.jconrel.2010.09.018.
    1. Larrañeta E., McCrudden M.T.C., Courtenay A.J., Donnelly R.F. Microneedles: A New Frontier in Nanomedicine Delivery. Pharm. Res. 2016;33:1055–1073. doi: 10.1007/s11095-016-1885-5.
    1. Zorec B., Préat V., Miklavčič D., Pavšelj N. Active enhancement methods for intra- and transdermal drug delivery: A review. Zdr. Vestn. 2013;82:339–356.
    1. Gupta J., Felner E.I., Prausnitz M.R. Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. Diabetes Technol. Ther. 2009;11:329–337. doi: 10.1089/dia.2008.0103.
    1. Mou H., MO L., Lee W., Huang C., Han Y. Wearable Liquid Supplying Device for Human Insulin Injection. 20190125964. U.S. Patent Application. 2019 May 2
    1. Van Der Maaden K., Jiskoot W., Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J. Control. Release. 2012;161:645–655. doi: 10.1016/j.jconrel.2012.01.042.
    1. Yeung C., Chen S., King B., Lin H., King K., Akhtar F., Diaz G., Wang B., Zhu J., Sun W., et al. A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics. 2019;13:064125. doi: 10.1063/1.5127778.
    1. Takeuchi K., Takama N., Kim B., Sharma K., Paul O., Ruther P. Microfluidic chip to interface porous microneedles for ISF collection. Biomed. Microdevices. 2019;21:28. doi: 10.1007/s10544-019-0370-4.
    1. Mishra R., Maiti T.K., Bhattacharyya T.K. Feasibility Studies on Nafion Membrane Actuated Micropump Integrated with Hollow Microneedles for Insulin Delivery Device. J. Microelectromech. Syst. 2019;28:987–996. doi: 10.1109/JMEMS.2019.2939189.
    1. Cui Q., Liu C., Zha X.F. Study on a piezoelectric micropump for the controlled drug delivery system. Microfluid. Nanofluidics. 2007;3:377–390. doi: 10.1007/s10404-006-0137-0.
    1. Gill H.S., Prausnitz M.R. Coating formulations for microneedles. Pharm. Res. 2007;24:1369–1380. doi: 10.1007/s11095-007-9286-4.
    1. Brown M.B., Traynor M.J., Martin G.P., Akomeah F.K. Transdermal drug delivery systems: Skin perturbation devices. Methods Mol. Biol. 2008;437:119–139. doi: 10.1007/978-1-59745-210-6_5.
    1. Vranić E., Tucak A., Sirbubalo M., Rahić O., Elezović A., Hadžiabdić J. Microneedle-based sensor systems for real-time continuous transdermal monitoring of analytes in body fluids; Proceedings of the CMBEBIH 2019, IFMBE Proceedings; Banja Luka, Bosnia and Herzegovina. 16–18 May 2019; Cham, Switzerland: Springer; 2019. pp. 167–172.
    1. Marshall S., Sahm L.J., Moore A.C. The success of microneedle-mediated vaccine delivery into skin. Hum. Vaccines Immunother. 2016;12:2975–2983. doi: 10.1080/21645515.2016.1171440.
    1. Kim Y.C., Quan F.S., Yoo D.G., Compans R.W., Kang S.M., Prausnitz M.R. Improved influenza vaccination in the skin using vaccine coated microneedles. Vaccine. 2009;27:6932–6938. doi: 10.1016/j.vaccine.2009.08.108.
    1. Kim Y.C., Quan F.S., Yoo D.G., Compans R.W., Kang S.M., Prausnitz M.R. Enhanced memory responses to seasonal H1N1 influenza vaccination of the skin with the use of vaccine-coated microneedles. J. Infect. Dis. 2010;201:190–198. doi: 10.1086/649228.
    1. Shakya A.K., Lee C.H., Gill H.S. Cutaneous vaccination with coated microneedles prevents development of airway allergy. J. Control. Release. 2017;265:75–82. doi: 10.1016/j.jconrel.2017.08.012.
    1. Fukushima K., Ise A., Morita H., Hasegawa R., Ito Y., Sugioka N., Takada K. Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharm. Res. 2011;28:7–21. doi: 10.1007/s11095-010-0097-7.
    1. Zhao X., Coulman S.A., Hanna S.J., Wong F.S., Dayan C.M., Birchall J.C. Formulation of hydrophobic peptides for skin delivery via coated microneedles. J. Control. Release. 2017;265:2–13. doi: 10.1016/j.jconrel.2017.03.015.
    1. Kapoor Y., Milewski M., Dick L., Zhang J., Bothe J.R., Gehrt M., Manser K., Nissley B., Petrescu I., Johnson P., et al. Coated microneedles for transdermal delivery of a potent pharmaceutical peptide. Biomed. Microdevices. 2020;22:1–10. doi: 10.1007/s10544-019-0462-1.
    1. Li H., Low Y.S.J., Chong H.P., Zin M.T., Lee C.Y., Li B., Leolukman M., Kang L. Microneedle-mediated delivery of copper peptide through skin. Pharm. Res. 2015;32:2678–2689. doi: 10.1007/s11095-015-1652-z.
    1. Pearton M., Saller V., Coulman S.A., Gateley C., Anstey A.V., Zarnitsyn V., Birchall J.C. Microneedle delivery of plasmid DNA to living human skin: Formulation coating, skin insertion and gene expression. J. Control. Release. 2012;160:561–569. doi: 10.1016/j.jconrel.2012.04.005.
    1. Ling M.H., Chen M.C. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats. Acta Biomater. 2013;9:8952–8961. doi: 10.1016/j.actbio.2013.06.029.
    1. McGrath M.G., Vrdoljak A., O’Mahony C., Oliveira J.C., Moore A.C., Crean A.M. Determination of parameters for successful spray coating of silicon microneedle arrays. Int. J. Pharm. 2011;415:140–149. doi: 10.1016/j.ijpharm.2011.05.064.
    1. Quinn H.L., Bonham L., Hughes C.M., Donnelly R.F. Design of a Dissolving Microneedle Platform for Transdermal Delivery of a Fixed-Dose Combination of Cardiovascular Drugs. J. Pharm. Sci. 2015;104:3490–3500. doi: 10.1002/jps.24563.
    1. Donnelly R.F., Raj Singh T.R., Woolfson A.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv. 2010;17:187–207. doi: 10.3109/10717541003667798.
    1. Lee J.W., Park J.H., Prausnitz M.R. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29:2113–2124. doi: 10.1016/j.biomaterials.2007.12.048.
    1. Garland M.J., Singh T.R.R., Woolfson A.D., Donnelly R.F. Electrically enhanced solute permeation across poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels: Effect of hydrogel crosslink density and ionic conductivity. Int. J. Pharm. 2011;406:91–98. doi: 10.1016/j.ijpharm.2011.01.002.
    1. Ita K. Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics. 2015;7:90–105. doi: 10.3390/pharmaceutics7030090.
    1. Bariya S.H., Gohel M.C., Mehta T.A., Sharma O.P. Microneedles: An emerging transdermal drug. J. Pharm. Pharmacol. 2012;64:11–29. doi: 10.1111/j.2042-7158.2011.01369.x.
    1. Kaur M., Ita K.B., Popova I.E., Parikh S.J., Bair D.A. Microneedle-assisted delivery of verapamil hydrochloride and amlodipine besylate. Eur. J. Pharm. Biopharm. 2014;86:284–291. doi: 10.1016/j.ejpb.2013.10.007.
    1. Gupta J., Gill H.S., Andrews S.N., Prausnitz M.R. Kinetics of skin resealing after insertion of microneedles in human subjects. J. Control. Release. 2011;154:148–155. doi: 10.1016/j.jconrel.2011.05.021.
    1. Ovsianikov A., Chichkov B., Mente P., Monteiro-Riviere N.A., Doraiswamy A., Narayan R.J. Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery. Int. J. Appl. Ceram. Technol. 2007;4:22–29. doi: 10.1111/j.1744-7402.2007.02115.x.
    1. Tu J., Reeves N. Feasibility Study of Microneedle Fabrication from a thin Nitinol Wire Using a CW Single-Mode Fiber Laser. Open Eng. 2019;9:167–177. doi: 10.1515/eng-2019-0023.
    1. Park J.H., Allen M.G., Prausnitz M.R. Polymer microneedles for controlled-release drug delivery. Pharm. Res. 2006;23:1008–1019. doi: 10.1007/s11095-006-0028-9.
    1. McAllister D.V., Wang P.M., Davis S.P., Park J.H., Canatella P.J., Allen M.G., Prausnitz M.R. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies. Proc. Natl. Acad. Sci. USA. 2003;100:13755–13760. doi: 10.1073/pnas.2331316100.
    1. Pérennès F., Marmiroli B., Matteucci M., Tormen M., Vaccari L., Di Fabrizio E. Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. J. Micromechanics Microengineering. 2006;16:473–479. doi: 10.1088/0960-1317/16/3/001.
    1. Park J.H., Choi S.O., Seo S., Choy Y.B., Prausnitz M.R. A microneedle roller for transdermal drug delivery. Eur. J. Pharm. Biopharm. 2010;76:282–289. doi: 10.1016/j.ejpb.2010.07.001.
    1. Kolli C.S., Banga A.K. Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm. Res. 2008;25:104–113. doi: 10.1007/s11095-007-9350-0.
    1. Camović M., Biščević A., Brčić I., Borčak K., Bušatlić S., Ćenanović N., Dedović A., Mulalić A., Sirbubalo M., Tucak A., et al. Acid-resistant capsules with sugar microneedles for oral delivery of ascorbic acid; Proceedings of the CMBEBIH 2019, IFMBE Proceedings; Banja Luka, Bosnia and Herzegovina. 16–18 May 2019; Cham, Switzerland: Springer; 2019. pp. 749–753.
    1. Ito Y., Hagiwara E., Saeki A., Sugioka N., Takada K. Feasibility of microneedles for percutaneous absorption of insulin. Eur. J. Pharm. Sci. 2006;29:82–88. doi: 10.1016/j.ejps.2006.05.011.
    1. Kathuria H., Kang K., Cai J., Kang L. Rapid microneedle fabrication by heating and photolithography. Int. J. Pharm. 2020;575:118992. doi: 10.1016/j.ijpharm.2019.118992.
    1. Wilke N., Mulcahy A., Ye S.R., Morrissey A. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectronics J. 2005;36:650–656. doi: 10.1016/j.mejo.2005.04.044.
    1. Liu Y., Eng P.F., Guy O.J., Roberts K., Ashraf H., Knight N. Advanced deep reactive-ion etching technology for hollow microneedles for transdermal blood sampling and drug delivery. IET Nanobiotechnology. 2013;7:59–62. doi: 10.1049/iet-nbt.2012.0018.
    1. Doraiswamy A., Jin C., Narayan R.J., Mageswaran P., Mente P., Modi R., Auyeung R., Chrisey D.B., Ovsianikov A., Chichkov B. Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices. Acta Biomater. 2006;2:267–275. doi: 10.1016/j.actbio.2006.01.004.
    1. Martanto W., Moore J.S., Kashlan O., Kamath R., Wang P.M., O’Neal J.M., Prausnitz M.R. Microinfusion using hollow microneedles. Pharm. Res. 2006;23:104–113. doi: 10.1007/s11095-005-8498-8.
    1. Mahadevan G., Sheardown H., Selvaganapathy P. PDMS embedded microneedles as a controlled release system for the eye. J. Biomater. Appl. 2013;28:20–27. doi: 10.1177/0885328211433778.
    1. Tu J., Du G., Reza Nejadnik M., Mönkäre J., van der Maaden K., Bomans P.H.H., Sommerdijk N.A.J.M., Slütter B., Jiskoot W., Bouwstra J.A., et al. Mesoporous Silica Nanoparticle-Coated Microneedle Arrays for Intradermal Antigen Delivery. Pharm. Res. 2017;34:1693–1706. doi: 10.1007/s11095-017-2177-4.
    1. Norman J.J., Choi S.O., Tong N.T., Aiyar A.R., Patel S.R., Prausnitz M.R., Allen M.G. Hollow microneedles for intradermal injection fabricated by sacrificial micromolding and selective electrodeposition. Biomed. Microdevices. 2013;15:203–210. doi: 10.1007/s10544-012-9717-9.
    1. Jung P., Lee T., Oh D., Hwang S., Jung I., Lee S., Ko J. Nickel microneedles fabricated by sequential copper and nickel electroless plating and copper chemical wet etching. Sens. Mater. 2008;20:45–53.
    1. Wang P.C., Wester B.A., Rajaraman S., Paik S.J., Kim S.H., Allen M.G. Hollow polymer microneedle array fabricated by photolithography process combined with micromolding technique; Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine; Minneapolis, MN, USA. 3–6 September 2009; pp. 7026–7029.
    1. Ma B., Liu S., Gan Z., Liu G., Cai X., Zhang H., Yang Z. A PZT insulin pump integrated with a silicon microneedle array for transdermal drug delivery. Microfluid. Nanofluidics. 2006;2:417–423. doi: 10.1007/s10404-006-0083-x.
    1. Gill H.S., Denson D.D., Burris B.A., Prausnitz M.R. Effect of microneedle design on pain in human subjects. Clin. J. Pain. 2008;24:585–594. doi: 10.1097/AJP.0b013e31816778f9.
    1. Indermun S., Luttge R., Choonara Y.E., Kumar P., Du Toit L.C., Modi G., Pillay V. Current advances in the fabrication of microneedles for transdermal delivery. J. Control. Release. 2014;185:130–138. doi: 10.1016/j.jconrel.2014.04.052.
    1. Nagarkar R., Singh M., Nguyen H.X., Jonnalagadda S. A review of recent advances in microneedle technology for transdermal drug delivery. J. Drug Deliv. Sci. Technol. 2020;59:101923. doi: 10.1016/j.jddst.2020.101923.
    1. Omatsu T., Chujo K., Miyamoto K., Okida M., Nakamura K., Aoki N., Morita R. Metal microneedle fabrication using twisted light with spin. Opt. Express. 2010;18:7616–7622. doi: 10.1364/OE.18.017967.
    1. Evens T., Malek O., Castagne S., Seveno D., Van Bael A. A novel method for producing solid polymer microneedles using laser ablated moulds in an injection moulding process. Manuf. Lett. 2020;24:29–32. doi: 10.1016/j.mfglet.2020.03.009.
    1. Parker E.R., Rao M.P., Turner K.L., Meinhart C.D., MacDonald N.C. Bulk micromachined titanium microneedles. J. Microelectromech. Syst. 2007;16:289–295. doi: 10.1109/JMEMS.2007.892909.
    1. Ameri M., Kadkhodayan M., Nguyen J., Bravo J.A., Su R., Chan K., Samiee A., Daddona P.E. Human growth hormone delivery with a microneedle transdermal system: Preclinical formulation, stability, delivery and PK of therapeutically relevant doses. Pharmaceutics. 2014;6:220–234. doi: 10.3390/pharmaceutics6020220.
    1. Gittard S.D., Ovsianikov A., Chichkov B.N., Doraiswamy A., Narayan R.J. Two-photon polymerization of microneedles for transdermal drug delivery. Expert Opin. Drug Deliv. 2010;7:513–533. doi: 10.1517/17425241003628171.
    1. McGrath M.G., Vucen S., Vrdoljak A., Kelly A., O’Mahony C., Crean A.M., Moore A. Production of dissolvable microneedles using an atomised spray process: Effect of microneedle composition on skin penetration. Eur. J. Pharm. Biopharm. 2014;86:200–211. doi: 10.1016/j.ejpb.2013.04.023.
    1. Wu L., Takama N., Park J., Kim B., Kim J., Jeong D. Shadow mask assisted droplet-born air-blowing method for fabrication of dissoluble microneedle; Proceedings of the 12th International Conference on Nano/Micro Engineered and Molecular Systems; Los Angeles, CA, USA. 9–12 April 2017; pp. 456–459.
    1. Camović M., Biščević A., Brčić I., Borčak K., Bušatlić S., Ćenanović N., Dedović A., Mulalić A., Osmanlić M., Sirbubalo M., et al. Coated 3D printed PLA microneedles as transdermal drug delivery systems; Proceedings of the CMBEBIH 2019, IFMBE Proceedings; Banja Luka, Bosnia and Herzegovina. 16–18 May 2019; Cham, Switzerland: Springer; 2019. pp. 735–742.
    1. Luzuriaga M.A., Berry D.R., Reagan J.C., Smaldone R.A., Gassensmitha J.J. Biodegradable 3D Printed Polymer Microneedles for Transdermal Drug Delivery. Lab Chip. 2018;18:1223–1230. doi: 10.1039/C8LC00098K.
    1. Aoyagi S., Izumi H., Isono Y., Fukuda M., Ogawa H. Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle. Sens. Actuators A Phys. 2007;139:293–302. doi: 10.1016/j.sna.2006.11.022.
    1. McCrudden M.T.C., Alkilani A.Z., McCrudden C.M., McAlister E., McCarthy H.O., Woolfson A.D., Donnelly R.F. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs. J. Control. Release. 2014;180:71–80. doi: 10.1016/j.jconrel.2014.02.007.
    1. Guillot A.J., Cordeiro A.S., Donnelly R.F., Montesinos M.C., Garrigues T.M., Melero A. Microneedle-based delivery: An overview of current applications and trends. Pharmaceutics. 2020;12:569. doi: 10.3390/pharmaceutics12060569.
    1. Lutton R.E.M., Larrañeta E., Kearney M.C., Boyd P., Woolfson A.D., Donnelly R.F. A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays. Int. J. Pharm. 2015;494:417–429. doi: 10.1016/j.ijpharm.2015.08.049.
    1. Kim J.D., Kim M., Yang H., Lee K., Jung H. Droplet-born air blowing: Novel dissolving microneedle fabrication. J. Control. Release. 2013;170:430–436. doi: 10.1016/j.jconrel.2013.05.026.
    1. Zahn J.D., Talbot N.H., Liepmann D., Pisano A.P. Microfabricated polysilicon microneedles for minimally invasive biomedical devices. Biomed. Microdevices. 2000;2:295–303. doi: 10.1023/A:1009907306184.
    1. Trotta M., Debernardi F., Caputo O., Charcosset C., El-Harati A., Fessi H., Mishra V., Bansal K.K., Verma A., Yadav N., et al. Cationic solid lipid nanoparticles reconstituted from low density lipoprotein components for delivery of siRNA. Int. J. Pharm. 2012;68:268–273.
    1. Uddin M.J., Scoutaris N., Economidou S.N., Giraud C., Chowdhry B.Z., Donnelly R.F., Douroumis D. 3D printed microneedles for anticancer therapy of skin tumours. Mater. Sci. Eng. C. 2020;107:110248. doi: 10.1016/j.msec.2019.110248.
    1. Economidou S.N., Pere C.P.P., Reid A., Uddin M.J., Windmill J.F.C., Lamprou D.A., Douroumis D. 3D printed microneedle patches using stereolithography (SLA)for intradermal insulin delivery. Mater. Sci. Eng. C. 2019;102:743–755. doi: 10.1016/j.msec.2019.04.063.
    1. Cordeiro A.S., Tekko I.A., Jomaa M.H., Vora L., Mcalister E., Volpe-zanutto F., Nethery M., Baine P.T., Mitchell N., Mcneill D.W., et al. Two-Photon Polymerisation 3D Printing of Microneedle Array Templates with Versatile Designs: Application in the Development of Polymeric Drug Delivery Systems. Pharm. Res. 2020;37:1–15. doi: 10.1007/s11095-020-02887-9.
    1. Roxhed N. A Fully Integrated Microneedle-Based Transdermal Drug Delivery System. KTH—Royal Institute of Technology; Stockholm, Sweden: 2007.
    1. Razali A.R., Qin Y. A review on micro-manufacturing, micro-forming and their key issues. Procedia Eng. 2013;53:665–672. doi: 10.1016/j.proeng.2013.02.086.
    1. Nuxoll E. BioMEMS in drug delivery. Adv. Drug Deliv. Rev. 2013;65:1611–1625. doi: 10.1016/j.addr.2013.07.003.
    1. Madou M. Fundamentals Of Microfabrication And Nanotechnology. 1st ed. CRC Press; Boca Raton, FL, USA: 2012.
    1. Ita K. Transdermal delivery of drugs with microneedles: Strategies and outcomes. J. Drug Deliv. Sci. Technol. 2015;29:16–23. doi: 10.1016/j.jddst.2015.05.001.
    1. Roxhed N., Gasser T.C., Griss P., Holzapfel G.A., Stemme G. Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery. J. Microelectromech. Syst. 2007;16:1429–1440. doi: 10.1109/JMEMS.2007.907461.
    1. Albarahmieh E., AbuAmmouneh L., Kaddoura Z., AbuHantash F., Alkhalidi B.A., Al-Halhouli A. Fabrication of Dissolvable Microneedle Patches Using an Innovative Laser-Cut Mould Design to Shortlist Potentially Transungual Delivery Systems: In Vitro Evaluation. AAPS PharmSciTech. 2019;20:1–14. doi: 10.1208/s12249-019-1429-5.
    1. Kim J.D., Bae J.H., Kim H.K., Jeong D.H. Droplet-born Air Blowing(DAB) technology for the industrialization of dissolving microneedle; Proceedings of the World Congress on Recent Advances in Nanotechnology; Prague, Czech Republic. 1–2 April 2016.
    1. Huh I., Kim S., Yang H., Jang M., Kang G., Jung H. Effects of two droplet-based dissolving microneedle manufacturing methods on the activity of encapsulated epidermal growth factor and ascorbic acid. Eur. J. Pharm. Sci. 2018;114:285–292. doi: 10.1016/j.ejps.2017.12.025.
    1. Economidou S.N., Lamprou D.A., Douroumis D. 3D printing applications for transdermal drug delivery. Int. J. Pharm. 2018;544:415–424. doi: 10.1016/j.ijpharm.2018.01.031.
    1. Alhnan M.A., Okwuosa T.C., Sadia M., Wan K.W., Ahmed W., Arafat B. Emergence of 3D Printed Dosage Forms: Opportunities and Challenges. Pharm. Res. 2016;33:1817–1832. doi: 10.1007/s11095-016-1933-1.
    1. Jamróz W., Szafraniec J., Kurek M., Jachowicz R. 3D Printing in Pharmaceutical and Medical Applications—Recent Achievements and Challenges. Pharm. Res. 2018;35:176. doi: 10.1007/s11095-018-2454-x.
    1. Prasad L.K., Smyth H. 3D Printing technologies for drug delivery: A review. Drug Dev. Ind. Pharm. 2016;42:1019–1031. doi: 10.3109/03639045.2015.1120743.
    1. Lim S.H., Kathuria H., Tan J.J.Y., Kang L. 3D printed drug delivery and testing systems—A passing fad or the future? Adv. Drug Deliv. Rev. 2018;132:139–168. doi: 10.1016/j.addr.2018.05.006.
    1. Goole J., Amighi K. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int. J. Pharm. 2016;499:376–394. doi: 10.1016/j.ijpharm.2015.12.071.
    1. Awad A., Trenfield S.J., Gaisford S., Basit A.W. 3D printed medicines: A new branch of digital healthcare. Int. J. Pharm. 2018;548:586–596. doi: 10.1016/j.ijpharm.2018.07.024.
    1. Krieger K.J., Bertollo N., Dangol M., Sheridan J.T., Lowery M.M., O’Cearbhaill E.D. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst. Nanoeng. 2019;5 doi: 10.1038/s41378-019-0088-8.
    1. Farias C., Lyman R., Hemingway C., Chau H., Mahacek A., Bouzos E., Mobed-Miremadi M. Three-dimensional (3D) printed microneedles for microencapsulated cell extrusion. Bioengineering. 2018;5 doi: 10.3390/bioengineering5030059.
    1. Pere C.P.P., Economidou S.N., Lall G., Ziraud C., Boateng J.S., Alexander B.D., Lamprou D.A., Douroumis D. 3D printed microneedles for insulin skin delivery. Int. J. Pharm. 2018;544:425–432. doi: 10.1016/j.ijpharm.2018.03.031.
    1. Xenikakis I., Tzimtzimis M., Tsongas K., Andreadis D., Demiri E., Tzetzis D., Fatouros D.G. Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro. Eur. J. Pharm. Sci. 2019;137:104976. doi: 10.1016/j.ejps.2019.104976.
    1. Gittard S.D., Miller P.R., Jin C., Martin T.N., Boehm R.D., Chisholm B.J., Stafslien S.J., Daniels J.W., Cilz N., Monteiro-Riviere N.A., et al. Deposition of antimicrobial coatings on microstereolithography-fabricated microneedles. Jom. 2011;63:59–68. doi: 10.1007/s11837-011-0093-3.
    1. Lu Y., Mantha S.N., Crowder D.C., Chinchilla S., Shah K.N., Yun Y.H., Wicker R.B., Choi J.W. Microstereolithography and characterization of poly(propylene fumarate)-based drug-loaded microneedle arrays. Biofabrication. 2015;7 doi: 10.1088/1758-5090/7/4/045001.
    1. El-Sayed N., Vaut L., Schneider M. Customized fast-separable microneedles prepared with the aid of 3D printing for nanoparticle delivery. Eur. J. Pharm. Biopharm. 2020;154:166–174. doi: 10.1016/j.ejpb.2020.07.005.
    1. Lim S.H., Tiew W.J., Zhang J., Ho P.C.L., Kachouie N.N., Kang L. Geometrical optimisation of a personalised microneedle eye patch for transdermal delivery of anti-wrinkle small peptide. Biofabrication. 2020;12 doi: 10.1088/1758-5090/ab6d37.
    1. Trautmann A., Roth G.L., Nujiqi B., Walther T., Hellmann R. Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays. Microsyst. Nanoeng. 2019;5 doi: 10.1038/s41378-019-0046-5.
    1. Aksit A., Arteaga D.N., Arriaga M., Wang X., Watanabe H., Kasza K.E., Lalwani A.K., Kysar J.W. In-vitro perforation of the round window membrane via direct 3-D printed microneedles. Biomed. Microdevices. 2018;20 doi: 10.1007/s10544-018-0287-3.
    1. Wu M., Zhang Y., Huang H., Li J., Liu H., Guo Z., Xue L., Liu S., Lei Y. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater. Sci. Eng. C. 2020;117:111299. doi: 10.1016/j.msec.2020.111299.
    1. Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B. 2018;143:172–196. doi: 10.1016/j.compositesb.2018.02.012.
    1. Duarah S., Sharma M., Wen J. European Journal of Pharmaceutics and Biopharmaceutics Recent advances in microneedle-based drug delivery: Special emphasis on its use in paediatric population. Eur. J. Pharm. Biopharm. 2019;136:48–69. doi: 10.1016/j.ejpb.2019.01.005.
    1. Ingrole R.S.J., Gill H.S. Microneedle coating methods: A review with a perspective. J. Pharmacol. Exp. Ther. 2019;370:555–569. doi: 10.1124/jpet.119.258707.
    1. Caudill C.L., Perry J.L., Tian S., Luft J.C. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. J. Control. Release. 2018;284:122–132. doi: 10.1016/j.jconrel.2018.05.042.
    1. Liang L., Chen Y., Zhang B.L., Zhang X.P., Liu J.L., Shen C.B., Cui Y., Guo X.D. Optimization of dip-coating methods for the fabrication of coated microneedles for drug delivery. J. Drug Deliv. Sci. Technol. 2020;55:101464. doi: 10.1016/j.jddst.2019.101464.
    1. Duong H.T.T., Kim N.W., Thambi T., Giang Phan V.H., Lee M.S., Yin Y., Jeong J.H., Lee D.S. Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses. J. Control. Release. 2018;269:225–234. doi: 10.1016/j.jconrel.2017.11.025.
    1. Farris E., Brown D.M., Ramer-Tait A.E., Pannier A.K. Micro- and nanoparticulates for DNA vaccine delivery. Exp. Biol. Med. 2016;241:919–929. doi: 10.1177/1535370216643771.
    1. Jung D., Rejinold N.S., Kwak J.E., Park S.H., Kim Y.C. Nano-patterning of a stainless steel microneedle surface to improve the dip-coating efficiency of a DNA vaccine and its immune response. Colloids Surfaces B Biointerfaces. 2017;159:54–61. doi: 10.1016/j.colsurfb.2017.07.059.
    1. Kim Y.C., Quan F.S., Compans R.W., Kang S.M., Prausnitz M.R. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J. Control. Release. 2010;142:187–195. doi: 10.1016/j.jconrel.2009.10.013.
    1. Van Der Maaden K., Sekerdag E., Schipper P., Kersten G., Jiskoot W., Bouwstra J. Layer-by-Layer Assembly of Inactivated Poliovirus and N-Trimethyl Chitosan on pH-Sensitive Microneedles for Dermal Vaccination. Langmuir. 2015;31:8654–8660. doi: 10.1021/acs.langmuir.5b01262.
    1. Vrdoljak A., McGrath M.G., Carey J.B., Draper S.J., Hill A.V.S., O’Mahony C., Crean A.M., Moore A.C. Coated microneedle arrays for transcutaneous delivery of live virus vaccines. J. Control. Release. 2012;159:34–42. doi: 10.1016/j.jconrel.2011.12.026.
    1. Lim D.J., Vines J.B., Park H., Lee S.H. Microneedles: A versatile strategy for transdermal delivery of biological molecules. Int. J. Biol. Macromol. 2018;110:30–38. doi: 10.1016/j.ijbiomac.2017.12.027.
    1. Haj-Ahmad R., Khan H., Arshad M.S., Rasekh M., Hussain A., Walsh S., Li X., Chang M.W., Ahmad Z. Microneedle coating techniques for transdermal drug delivery. Pharmaceutics. 2015;7:486–502. doi: 10.3390/pharmaceutics7040486.
    1. Chen X., Prow T.W., Crichton M.L., Jenkins D.W.K., Roberts M.S., Frazer I.H., Fernando G.J.P., Kendall M.A.F. Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J. Control. Release. 2009;139:212–220. doi: 10.1016/j.jconrel.2009.06.029.
    1. Chen X., Fernando G.J.P., Crichton M.L., Flaim C., Yukiko S.R., Fairmaid E.J., Corbett H.J., Primiero C.A., Ansaldo A.B., Frazer I.H., et al. Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J. Control. Release. 2011;152:349–355. doi: 10.1016/j.jconrel.2011.02.026.
    1. Nikolaou M., Krasia-Christoforou T. Electrohydrodynamic methods for the development of pulmonary drug delivery systems. Eur. J. Pharm. Sci. 2018;113:29–40. doi: 10.1016/j.ejps.2017.08.032.
    1. Haj-Ahmad R., Rasekh M., Nazari K., Li Y., Fu Y., Li B., Zhang Q., Xia Z., Liu H., Gu T., et al. EHDA Spraying: A Multi-Material Nano-Engineering Route. Curr. Pharm. Des. 2015;21:3239–3247. doi: 10.2174/1381612821666150531171506.
    1. Khan H., Mehta P., Msallam H., Armitage D., Ahmad Z. Smart microneedle coatings for controlled delivery and biomedical analysis. J. Drug Target. 2014;22:790–795. doi: 10.3109/1061186X.2014.921926.
    1. Ali R., Mehta P., Kyriaki Monou P., Arshad M.S., Panteris E., Rasekh M., Singh N., Qutachi O., Wilson P., Tzetzis D., et al. Electrospinning/electrospraying coatings for metal microneedles: A design of experiments (DOE) and quality by design (QbD) approach. Eur. J. Pharm. Biopharm. 2020;156:20–39. doi: 10.1016/j.ejpb.2020.08.023.
    1. Angkawinitwong U., Courtenay A.J., Rodgers A.M., Larrañeta E., Mccarthy H.O., Brocchini S., Donnelly R.F., Williams G.R. A Novel Transdermal Protein Delivery Strategy via Electrohydrodynamic Coating of PLGA Microparticles onto Microneedles. ACS Appl. Mater. Interfaces. 2020;12:12478–12488. doi: 10.1021/acsami.9b22425.
    1. Boehm R.D., Miller P.R., Daniels J., Stafslien S., Narayan R.J. Inkjet printing for pharmaceutical applications. Mater. Today. 2014;17:247–252. doi: 10.1016/j.mattod.2014.04.027.
    1. Uddin M.J., Scoutaris N., Klepetsanis P., Chowdhry B., Prausnitz M.R., Douroumis D. Inkjet printing of transdermal microneedles for the delivery of anticancer agents. Int. J. Pharm. 2015;494:593–602. doi: 10.1016/j.ijpharm.2015.01.038.
    1. Daly R., Harrington T.S., Martin G.D., Hutchings I.M. Inkjet printing for pharmaceutics—A review of research and manufacturing. Int. J. Pharm. 2015;494:554–567. doi: 10.1016/j.ijpharm.2015.03.017.
    1. Boehm R.D., Daniels J., Stafslien S., Nasir A., Lefebvre J., Narayan R.J. Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings. Biointerphases. 2015;10:011004. doi: 10.1116/1.4913378.
    1. Tarbox T.N., Watts A.B., Cui Z., Williams R.O. An update on coating/manufacturing techniques of microneedles. Drug Deliv. Transl. Res. 2018;8:1828–1843. doi: 10.1007/s13346-017-0466-4.
    1. Lee J.W., Prausnitz M.R. Drug delivery using microneedle patches: Not just for skin. Expert Opin. Drug Deliv. 2018;15:541–543. doi: 10.1080/17425247.2018.1471059.
    1. Thakur R.R.S., Tekko I., McAvoy K., McMillan H., Jones D., Donnelly R.F. Minimally invasive microneedles for ocular drug delivery. Expert Opin. Drug Deliv. 2017;14:525–537. doi: 10.1080/17425247.2016.1218460.
    1. Donnelly R.F., Mooney K., Caffarel-Salvador E., Torrisi B.M., Eltayib E., McElnay J.C. Microneedle-mediated minimally invasive patient monitoring. Ther. Drug Monit. 2014;36:10–17. doi: 10.1097/FTD.0000000000000022.
    1. Laurent P.E., Bonnet S., Alchas P., Regolini P., Mikszta J.A., Pettis R., Harvey N.G. Evaluation of the clinical performance of a new intradermal vaccine administration technique and associated delivery system. Vaccine. 2007;25:8833–8842. doi: 10.1016/j.vaccine.2007.10.020.
    1. Intanza | European Medicines Agency. [(accessed on 19 October 2020)]; Available online: .
    1. A Pilot Study to Assess the Safety, PK and PD of Insulin Injected via MicronJet or Conventional Needle. [(accessed on 29 August 2020)]; Available online: .
    1. Levin Y., Kochba E., Hung I., Kenney R. Intradermal vaccination using the novel microneedle device MicronJet600: Past, present, and future. Hum. Vaccines Immunother. 2015;11:991–997. doi: 10.1080/21645515.2015.1010871.
    1. Clinical Study to Evaluate Safety and Immunogenicity of Bacillus Calmette-Guerin (BCG) Delivery via Novel Micronjet600 Device Compared to Those via Conventional Needle. [(accessed on 24 September 2020)]; Available online: .
    1. Microneedle Drug Delivery Systems | 3M United States. [(accessed on 19 October 2020)]; Available online:
    1. Efficacy & Safety of Abaloparatide-Solid Microstructured Transdermal System in Postmenopausal Women with Osteoporosis. [(accessed on 1 October 2020)]; Available online: .
    1. Zosano Pharma Receives Complete Response Letter from FDA for QtryptaTM. [(accessed on 22 October 2020)]; Available online: .
    1. Zosano Pharma | Migraine Treatment | M207 | Zolmitriptan. [(accessed on 1 October 2020)]; Available online:
    1. Clearside Bio: Programs. [(accessed on 22 October 2020)]; Available online: .
    1. Corium Inc Corium’s MicroCor® System Utilizes Dissolving Microstructures (Microneedles) for Innovative, Needle-Free Delivery of Biologics across the Skin. [(accessed on 21 October 2020)]; Available online:
    1. Bullfrog® Micro-Infusion Device. [(accessed on 21 October 2020)]; Available online:

Source: PubMed

3
Suscribir