Impact of Early Feeding: Metagenomics Analysis of the Infant Gut Microbiome

Matthew D Di Guglielmo, Karl R Franke, Alan Robbins, Erin L Crowgey, Matthew D Di Guglielmo, Karl R Franke, Alan Robbins, Erin L Crowgey

Abstract

Background: Different feeding regimens in infancy alter the gastrointestinal (gut) microbial environment. The fecal microbiota in turn influences gastrointestinal homeostasis including metabolism, immune function, and extra-/intra-intestinal signaling. Advances in next generation sequencing (NGS) have enhanced our ability to study the gut microbiome of breast-fed (BF) and formula-fed (FF) infants with a data-driven hypothesis approach.

Methods: Next generation sequencing libraries were constructed from fecal samples of BF (n=24) and FF (n=10) infants and sequenced on an Illumina HiSeq 2500. Taxonomic classification of the NGS data was performed using the Sunbeam/Kraken pipeline and a functional analysis at the gene level was performed using publicly available algorithms, including BLAST, and custom scripts. Differentially represented genera, genes, and NCBI Clusters of Orthologous Genes (COG) were determined between cohorts using count data and R (statistical packages edgeR and DESeq2).

Results: Thirty-nine genera were found to be differentially represented between the BF and FF cohorts (FDR ≤ 0.01) including Parabacteroides, Enterococcus, Haemophilus, Gardnerella, and Staphylococcus. A Welch t-test of the Shannon diversity index for BF and FF samples approached significance (p=0.061). Bray-Curtis and Jaccard distance analyses demonstrated clustering and overlap in each analysis. Sixty COGs were significantly overrepresented and those most significantly represented in BF vs. FF samples showed dichotomy of categories representing gene functions. Over 1,700 genes were found to be differentially represented (abundance) between the BF and FF cohorts.

Conclusions: Fecal samples analyzed from BF and FF infants demonstrated differences in microbiota genera. The BF cohort includes greater presence of beneficial genus Bifidobacterium. Several genes were identified as present at different abundances between cohorts indicating differences in functional pathways such as cellular defense mechanisms and carbohydrate metabolism influenced by feeding. Confirmation of gene level NGS data via PCR and electrophoresis analysis revealed distinct differences in gene abundances associated with important biologic pathways.

Keywords: breast-feeding; gut microbiome; infants; metagenomics; next generation sequencing; whole genome.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Di Guglielmo, Franke, Robbins and Crowgey.

Figures

Figure 1
Figure 1
Differentially Represented Genera. Distribution of genera identified in the gut microbiome of breast-fed and formula-fed infants. (A) Boxplot of the topmost abundant genera in breast-fed infants (red boxes) and the topmost abundant genera in formula-fed infants (blue boxes). The red asterisks represent the genera that were statistically different between the breast-fed and formula-fed cohorts. The y-axis represents phylogenetic abundance (percentage), and each genus is represented on the x-axis. Asterisk (*) represents some of the 39 genera in total that were differentially represented with FDR ≤ 0.01. (B) Shannon diversity index comparing breast-fed and formula-fed infants.
Figure 2
Figure 2
Clusters of Orthologous Genes (COG) Category Analysis. Statistically significant and overrepresented COGs are plotted by category and number from the total 60 COGs listed in Table 2.
Figure 3
Figure 3
Gene Amplification. (A, B) Non-quantitative PCR was used to validate the results of the bioinformatic analysis for 11 genes. Four representative samples from each cohort of breast-fed and formula-fed infants were analyzed using the purified DNA extracts. Next generation sequencing reads are shown under each PCR panel, as well as corresponding cohort with a higher abundance of the Clusters of Orthologous Genes category. (A) 326538, toxin component of the Txe-Axe toxin-antitoxin module, Txe/YoeB family; 156409, alkyl hydroperoxide reductase subunit AhpF; 309214, glycogen synthase; 316412, c-di-AMP phosphodiesterase, consists of a GGDEF-like and DHH domains; 288014, S-formylglutathione hydrolase FrmB. (B) 266471, chemotaxis protein CheY-P-specific phosphatase CheC; 234035, conjugal transfer/entry exclusion protein; 114703, phage DNA packaging protein, Nu1 subunit of terminase; 145511, adenylate cyclase, class 3; 178095, protein involved in initiation of plasmid replication; 345373, sensor histidine kinase regulating citrate/malate metabolism.

References

    1. Bäckhed F., Roswall J., Peng Y., Feng Q., Jia H., Kovatcheva-Datchary P., et al. . (2015). Dynamics and Stabilization of the Human Gut Microbiome During the First Year of Life. Cell Host Microbe 17, 690–703. doi: 10.1016/j.chom.2015.04.004
    1. Baumann-Dudenhoeffer A. M., D’Souza A. W., Tarr P. I., Warner B. B., Dantas G. (2018). Infant Diet and Maternal Gestational Weight Gain Predict Early Metabolic Maturation of Gut Microbiomes. Nat. Med. 24, 1822–1829. doi: 10.1038/s41591-018-0216-2
    1. Bode L. (2012). Human Milk Oligosaccharides: Every Baby Needs a Sugar Mama. Glycobiology 22, 1147–1162. doi: 10.1093/glycob/cws074
    1. Carr V. R., Shkoporov A., Hill C., Mullany P., Moyes D. L. (2021). Probing the Mobilome: Discoveries in the Dynamic Microbiome. Trends Microbiol. 29, 158–170. doi: 10.1016/j.tim.2020.05.003
    1. Casaburi G., Duar R. M., Vance D. P., Mitchell R., Contreras L., Frese S. A., et al. . (2019). Early-Life Gut Microbiome Modulation Reduces the Abundance of Antibiotic-Resistant Bacteria. Antimicrob. Resist. Infect. Control 8, 131. doi: 10.1186/s13756-019-0583-6
    1. Clapp M., Aurora N., Herrera L., Bhatia M., Wilen E., Wakefield S. (2017). Gut Microbiota’s Effect on Mental Health: The Gut-Brain Axis. Clin. Pract. 7, 987. doi: 10.4081/cp.2017.987
    1. Clarke E. L., Taylor L. J., Zhao C., Connell A., Lee J. J., Fett B., et al. . (2019). Sunbeam: An Extensible Pipeline for Analyzing Metagenomic Sequencing Experiments. Microbiome 7, 46. doi: 10.1186/s40168-019-0658-x
    1. Cox L. M., Yamanishi S., Sohn J., Alekseyenko A. V., Leung J. M., Cho I., et al. . (2014). Altering the Intestinal Microbiota During a Critical Developmental Window has Lasting Metabolic Consequences. Cell 158, 705–721. doi: 10.1016/j.cell.2014.05.052
    1. Crawley A. B., Henriksen E. D., Stout E., Brandt K., Barrangou R. (2018). Characterizing the Activity of Abundant, Diverse and Active CRISPR-Cas Systems in Lactobacilli. Sci. Rep. 8, 11544. doi: 10.1038/s41598-018-29746-3
    1. Davis E. C., Dinsmoor A. M., Wang M., Donovan S. M. (2020). Microbiome Composition in Pediatric Populations From Birth to Adolescence: Impact of Diet and Prebiotic and Probiotic Interventions. Dig Dis. Sci. 65, 706–722. doi: 10.1007/s10620-020-06092-x
    1. Davis E. C., Wang M., Donovan S. M. (2017). The Role of Early Life Nutrition in the Establishment of Gastrointestinal Microbial Composition and Function. Gut Microbes 8, 143–171. doi: 10.1080/19490976.2016.1278104
    1. den Besten G., van Eunen K., Groen A. K., Venema K., Reijngoud D. J., Bakker B. M. (2013). The Role of Short-Chain Fatty Acids in the Interplay Between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 54, 2325–2340. doi: 10.1194/jlr.R036012
    1. Di Guglielmo M. D., Franke K., Cox C., Crowgey E. L. (2019). Whole Genome Metagenomic Analysis of the Gut Microbiome of Differently Fed Infants Identifies Differences in Microbial Composition and Functional Genes, Including an Absent CRISPR/Cas9 Gene in the Formula-Fed Cohort. Hum. Microb. J. 12, 100057. doi: 10.1016/j.humic.2019.100057
    1. Dixon P. (2003). VEGAN, a Package of R Functions for Community Ecology. J. Vegetation Sci. 14, 927–930. doi: 10.1111/j.1654-1103.2003.tb02228.x
    1. Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., et al. . (2013). STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 29, 15–21. doi: 10.1093/bioinformatics/bts635
    1. Fallani M., Young D., Scott J., Norin E., Amarri S., Adam R., et al. . (2010). Intestinal Microbiota of 6-Week-Old Infants Across Europe: Geographic Influence Beyond Delivery Mode, Breast-Feeding, and Antibiotics. J. Pediatr. Gastroenterol. Nutr. 51, 77–84. doi: 10.1097/MPG.0b013e3181d1b11e
    1. Fukuda S., Toh H., Taylor T. D., Ohno H., Hattori M. (2012). Acetate-Producing Bifidobacteria Protect the Host From Enteropathogenic Infection via Carbohydrate Transporters. Gut Microbes 3, 449–454. doi: 10.4161/gmic.21214
    1. Garrido D., Ruiz-Moyano S., Lemay D. G., Sela D. A., German J. B., Mills D. A. (2015). Comparative Transcriptomics Reveals Key Differences in the Response to Milk Oligosaccharides of Infant Gut-Associated Bifidobacteria. Sci. Rep. 5, 13517. doi: 10.1038/srep13517
    1. Guaraldi F., Salvatori G. (2012). Effect of Breast and Formula Feeding on Gut Microbiota Shaping in Newborns. Front. Cell. Infect. Microbiol. 2, 94. doi: 10.3389/fcimb.2012.00094
    1. Henrick B. M., Chew S., Casaburi G., Brown H. K., Frese S. A., Zhou Y., et al. . (2019). Colonization by B. Infantis EVC001 Modulates Enteric Inflammation in Exclusively Breastfed Infants. Pediatr. Res. 86, 749–757. doi: 10.1038/s41390-019-0533-2
    1. Henrick B. M., Hutton A. A., Palumbo M. C., Casaburi G., Mitchell R., Underwood M. A., et al. . (2018). Elevated Fecal pH Indicates a Profound Change in the Breastfed Infant Gut Microbiome Due to Reduction of Bifidobacterium Over the Past Century. MSphere 3, e00041–e00018. doi: 10.1128/mSphere.00041-18
    1. Hyatt D., Chen G. L., LoCascio P. F., Land M. L., Larimer F. W., Hauser L. J. (2010). Prodigal Prokaryotic Gene Recognition and Translation Initiation Site Identification. BMC Bioinf. 11, 119. doi: 10.1186/1471-2105-11-119
    1. Jørgensen T. S., Kiil A. S., Hansen M. A., Sørensen S. J., Hansen L. H. (2015). Current Strategies for Mobilome Research. Front. Microbiol. 5, 1–6. doi: 10.3389/fmicb.2014.00750
    1. Kang D. W., Adams J. B., Coleman D. M., Pollard E. L., Maldonado J., McDonough-Means S., et al. . (2019). Long-Term Benefit of Microbiota Transfer Therapy on Autism Symptoms and Gut Microbiota. Sci. Rep. 9, 5821. doi: 10.1038/s41598-019-42183-0
    1. Kang D. W., Adams J. B., Gregory A. C., Borody T., Chittick L., Fasano A., et al. . (2017). Microbiota Transfer Therapy Alters Gut Ecosystem and Improves Gastrointestinal and Autism Symptoms: An Open-Label Study. Microbiome 5, 10. doi: 10.1186/s40168-016-0225-7
    1. Karav S., Casaburi G., Frese S. A. (2018). Reduced Colonic Mucin Degradation in Breastfed Infants Colonized by Bifidobacterium Longum Subsp. Infantis EVC001. FEBS Open Bio 8, 1649–1657. doi: 10.1002/2211-5463.12516
    1. Korpela K. (2021). Impact of Delivery Mode on Infant Gut Microbiota. Ann. Nutr. Metab. 77 (suppl 3), 11–19. doi: 10.1159/000518498
    1. Lee S. A., Lim J. Y., Kim B. S., Cho S. J., Kim N. Y., Kim O. B., et al. . (2015). Comparison of the Gut Microbiota Profile in Breast-Fed and Formula-Fed Korean Infants Using Pyrosequencing. Nutr. Res. Pract. 9, 242–248. doi: 10.4162/nrp.2015.9.3.242
    1. Lewis Z. T., Totten S. M., Smilowitz J. T., Popovic M., Parker E., Lemay D. G., et al. . (2015). Maternal Fucosyltransferase 2 Status Affects the Gut Bifidobacterial Communities of Breastfed Infants. Microbiome 3, 13. doi: 10.1186/s40168-015-0071-z
    1. Li B., Dewey C. N. (2011). RSEM: Accurate Transcript Quantification From RNA-Seq Data With or Without a Reference Genome. BMC Bioinf. 12, 323. doi: 10.1186/1471-2105-12-323
    1. Li D., Liu C. M., Luo R., Sadakane K., Lam T. W. (2015). MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex Metagenomics Assembly via Succinct De Bruijn Graph. Bioinformatics 31, 1674–1676. doi: 10.1093/bioinformatics/btv033
    1. Love M. I., Huber W., Anders S. (2014). Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data With Deseq2. Genome Biol. 15, 550. doi: 10.1186/s13059-014-0550-8
    1. Mancino W., Lugli G. A., van Sinderen D., Ventura M., Turroni F. (2019). Mobilome and Resistome Reconstruction From Genomes Belonging to Members of the Bifidobacterium Genus. Microorganisms 7, 638–652. doi: 10.3390/microorganisms7120638
    1. Pannaraj P. S., Li F., Cerini C., Bender J. M., Yang S., Rollie A., et al. . (2017). Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr. 171, 647–654. doi: 10.1001/jamapediatrics.2017.0378
    1. Robinson M. D., McCarthy D. J., Smyth G. K. (2010). Edger: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 26, 139–140. doi: 10.1093/bioinformatics/btp616
    1. Rodriguez J. M., Murphy K., Stanton C., Ross R. P., Kober O. I., Juge N., et al. . (2015). The Composition of the Gut Microbiota Throughout Life, With an Emphasis on Early Life. Microb. Ecol. Health Dis. 26, 26050. doi: 10.3402/mehd.v26.26050
    1. Ruiz-Moyano S., Totten S. M., Garrido D. A., Smilowitz J. T., German J. B., Lebrilla C. B., et al. . (2013). Variation in Consumption of Human Milk Oligosaccharides by Infant Gut-Associated Strains of Bifidobacterium Breve. Appl. Environ. Microbiol. 79, 6040–6049. doi: 10.1128/AEM.01843-13
    1. Rutayisire E., Huang K., Liu Y., Tao F. (2016). The Mode of Delivery Affects the Diversity and Colonization Pattern of the Gut Microbiota During the First Year of Infants’ Life: A Systematic Review. BMC Gastroenterol. 16, 86. doi: 10.1186/s12876-016-0498-0
    1. Sarkar A., Yoo J. Y., Valeria Ozorio Dutra S., Morgan K. H., Groer M. (2021). The Association Between Early-Life Gut Microbiota and Long-Term Health and Diseases. J. Clin. Med. 10, 459. doi: 10.3390/jcm10030459
    1. Savage J. H., Lee-Sarwar K. A., Sordillo J. E., Lange N. E., Zhou Y., O’Connor G. T., et al. . (2018). Diet During Pregnancy and Infancy and the Infant Intestinal Microbiome. J. Pediatr. 203, 47–54.e44. doi: 10.1016/j.jpeds.2018.07.066
    1. Schwartz S., Friedberg I., Ivanov I. V., Davidson L. A., Goldsby J. S., Dahl D. B., et al. . (2012). A Metagenomic Study of Diet-Dependent Interaction Between Gut Microbiota and Host in Infants Reveals Differences in Immune Response. Genome Biol. 13, r32. doi: 10.1186/gb-2012-13-4-r32
    1. Sela D. A., Chapmanc J., Adeuya A., Kim J. H., Chen F., Whitehead T. R., et al. . (2008). The Genome Sequence of Bifidobacterium Longum Subsp. Infantis Reveals Adaptations for Milk Utilization Within the Infant Microbiome. Proc. Natl. Acad. Sci. U. S. A. 105, 18964–18969. doi: 10.1073/pnas.0809584105
    1. Singhal A., Lanigan J. (2007). Breastfeeding, Early Growth and Later Obesity. Obes. Rev. 8 Suppl 1, 51–54. doi: 10.1111/j.1467-789X.2007.00318.x
    1. Stewart C. J., Ajami N. J., O’Brien J. L., Hutchinson D. S., Smith D. P., Wong M. C., et al. . (2018). Temporal Development of the Gut Microbiom in Early Childhood From the TEDDY Study. Nature 562, 583–602. doi: 10.1038/s41586-018-0617-x
    1. Taft D. H., Liu J., Maldonado-Gomez M. X., Akre S., Huda M. N., Ahmad S. M., et al. . (2018). Bifidobacterial Dominance of the Gut in Early Life and Acquisition of Antimicrobial Resistance. mSphere 3, e00441. doi: 10.1128/mSphere.00441-18
    1. Tatusov R. L., Koonin E. V., Lipman D. J. (1997). A Genomic Perspective on Protein Families. Science 278, 631–637. doi: 10.1126/science.278.5338.631
    1. Turroni F., Milani C., Duranti S., Lugli G. A., Bernasconi S., Margolles A., et al. . (2020). The Infant Gut Microbiome as a Microbial Organ Influencing Host Well-Being. Ital J. Pediatr. 46, 16. doi: 10.1186/s13052-020-0781-0
    1. Underwood M. A., Kalanetra K. M., Bokulich N. A., Lewis Z. T., Mirmiran M., Tancredi D. J., et al. . (2013). A Comparison of Two Probiotic Strains of Bifidobacteria in Premature Infants. J. Pediatr. 163, 1585–1591.e9. doi: 10.1016/j.jpeds.2013.07.017
    1. Wood D. E., Salzberg S. L. (2014). Kraken: Ultrafast Metagenomic Sequence Classification Using Exact Alignments. Genome Biol. 15, R46. doi: 10.1186/gb-2014-15-3-r46

Source: PubMed

3
Suscribir