The role of dorsolateral and ventromedial prefrontal cortex in the processing of emotional dimensions

Vahid Nejati, Reyhaneh Majdi, Mohammad Ali Salehinejad, Michael A Nitsche, Vahid Nejati, Reyhaneh Majdi, Mohammad Ali Salehinejad, Michael A Nitsche

Abstract

The ventromedial and dorsolateral prefrontal cortex are two major prefrontal regions that usually interact in serving different cognitive functions. On the other hand, these regions are also involved in cognitive processing of emotions but their contribution to emotional processing is not well-studied. In the present study, we investigated the role of these regions in three dimensions (valence, arousal and dominance) of emotional processing of stimuli via ratings of visual stimuli performed by the study participants on these dimensions. Twenty- two healthy adult participants (mean age 25.21 ± 3.84 years) were recruited and received anodal and sham transcranial direct current stimulation (tDCS) (1.5 mA, 15 min) over the dorsolateral prefrontal cortex (dlPFC) and and ventromedial prefrontal cortex (vmPFC) in three separate sessions with an at least 72-h interval. During stimulation, participants underwent an emotional task in each stimulation condition. The task included 100 visual stimuli and participants were asked to rate them with respect to valence, arousal, and dominance. Results show a significant effect of stimulation condition on different aspects of emotional processing. Specifically, anodal tDCS over the dlPFC significantly reduced valence attribution for positive pictures. In contrast, anodal tDCS over the vmPFC significantly reduced arousal ratings. Dominance ratings were not affected by the intervention. Our results suggest that the dlPFC is involved in control and regulation of valence of emotional experiences, while the vmPFC might be involved in the extinction of arousal caused by emotional stimuli. Our findings implicate dimension-specific processing of emotions by different prefrontal areas which has implications for disorders characterized by emotional disturbances such as anxiety or mood disorders.

Conflict of interest statement

MAN is a member of the Scientific Advisory Boards of Neuroelectrics and NeuroDevice. All other authors declare no competing interests.

Figures

Figure 1
Figure 1
(a) The SAM scales for rating stimulus valence, arousal, and dominance, in order from top to bottom; (b) a schematic diagram for the effect of the dlPFC and vmPFC on the valence and arousal based on the findings of the present study. Abbreviations: dlPFC: dorsolateral prefrontal cortex, vmPFC: ventromedial prefrontal cortex.
Figure 2
Figure 2
Shown are the effects of tDCS on valence, arousal and dominance of emotion ratings. Note vmPFC = ventromedial prefrontal cortex; dlPFC = dorsolateral prefrontal cortex; ns = non-significant; High emotional intensities represents positive, and low emotional intensities negative emotions for valence. * = indicates significant pairwise comparisons between stimulation conditions based on the results of post-hoc t-tests (paired, p < 0.05) n = 22; all error bars indicate Standerd Error of Mean (SEM).
Figure 3
Figure 3
Emotional attribution system disorders in depression and anxiety. A schematic diagram for the assumed role of arousal and valence in the psychopathology of anxiety and depression. Abbreviations: dlPFC: dorsolateral prefrontal cortex, vmPFC: ventromedial prefrontal cortex.

References

    1. Kolb B, Whishaw IQ. Fundamentals of Human Neuropsychology. New York: Macmillan; 2009.
    1. Kane MJ, Engle RW. The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychon. Bull. Rev. 2002;9:637–671. doi: 10.3758/BF03196323.
    1. Stuss DT, Benson DF. The Frontal Lobes. New York: Raven Pr; 1986.
    1. Ghanavati E, Salehinejad MA, Nejati V, Nitsche MA. Differential role of prefrontal, temporal and parietal cortices in verbal and figural fluency: Implications for the supramodal contribution of executive functions. Sci. Rep. 2019;9:3700. doi: 10.1038/s41598-019-40273-7.
    1. Barbey AK, Koenigs M, Grafman J. Dorsolateral prefrontal contributions to human working memory. Cortex. 2013;49:1195–1205. doi: 10.1016/j.cortex.2012.05.022.
    1. Liu S, et al. Brain activity and connectivity during poetry composition: toward a multidimensional model of the creative process. Hum. Brain Mapp. 2015;36:3351–3372. doi: 10.1002/hbm.22849.
    1. Vossel S, Geng JJ, Fink GR. Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. The Neuroscientist. 2014;20:150–159. doi: 10.1177/1073858413494269.
    1. Rahnev D, Nee DE, Riddle J, Larson AS, D’Esposito M. Causal evidence for frontal cortex organization for perceptual decision making. Proc. Natl. Acad. Sci. 2016;113:6059–6064. doi: 10.1073/pnas.1522551113.
    1. Proudfit GH. The reward positivity: from basic research on reward to a biomarker for depression. Psychophysiology. 2015;52:449–459. doi: 10.1111/psyp.12370.
    1. Kim H, Shimojo S, O’doherty JP. Overlapping responses for the expectation of juice and money rewards in human ventromedial prefrontal cortex. Cereb. Cortex. 2010;21:769–776. doi: 10.1093/cercor/bhq145.
    1. Camille N, et al. The involvement of the orbitofrontal cortex in the experience of regret. Science. 2004;304:1167–1170. doi: 10.1126/science.1094550.
    1. Pujara MS, Philippi CL, Motzkin JC, Baskaya MK, Koenigs M. Ventromedial prefrontal cortex damage is associated with decreased ventral striatum volume and response to reward. J. Neurosci. 2016;36:5047–5054. doi: 10.1523/JNEUROSCI.4236-15.2016.
    1. Salehinejad MA, Nejati V, Nitsche MA. Neurocognitive correlates of self-esteem: from self-related attentional bias to involvement of the ventromedial prefrontal cortex. Neurosci. Res. 2019 doi: 10.1016/j.neures.2019.12.008.
    1. Lyons, W. The philosophy of cognition and emotion. Handbook of cognition and emotion, 21–44 (1999).
    1. Zajonc RB. Feeling and thinking: preferences need no inferences. Am. Psychol. 1980;35:151. doi: 10.1037/0003-066X.35.2.151.
    1. Lazarus, R. S. On the primacy of cognition. (1984).
    1. Steele JD, Lawrie S. Segregation of cognitive and emotional function in the prefrontal cortex: a stereotactic meta-analysis. Neuroimage. 2004;21:868–875. doi: 10.1016/j.neuroimage.2003.09.066.
    1. Öhman A, Flykt A, Esteves F. Emotion drives attention: detecting the snake in the grass. J. Exp. Psychol. Gen. 2001;130:466. doi: 10.1037/0096-3445.130.3.466.
    1. Kim SH, Hamann S. Neural correlates of positive and negative emotion regulation. J. Cogn. Neurosci. 2007;19:776–798. doi: 10.1162/jocn.2007.19.5.776.
    1. Ray RD, Wilhelm FH, Gross JJ. All in the mind's eye? Anger rumination and reappraisal. J. Pers. Soc. Psychol. 2008;94:133. doi: 10.1037/0022-3514.94.1.133.
    1. Borhani K, Nejati V. Emotional face recognition in individuals withattention-deficit/hyperactivity disorder: a review article. Dev. Neuropsychol. 2018;43:256–277. doi: 10.1080/87565641.2018.1440295.
    1. O’Reilly RC. The what and how of prefrontal cortical organization. Trends Neurosci. 2010;33:355–361. doi: 10.1016/j.tins.2010.05.002.
    1. Sallet J, et al. The organization of dorsal frontal cortex in humans and macaques. J. Neurosci. 2013;33:12255–12274. doi: 10.1523/JNEUROSCI.5108-12.2013.
    1. Alizadehgoradel J, et al. Repeated stimulation of the dorsolateral-prefrontal cortex improves executive dysfunctions and craving in drug addiction: a randomized, double-blind, parallel-group study. Brain Stimul. 2020 doi: 10.1016/j.brs.2019.12.028.
    1. Salehinejad MA, Ghanavai E, Rostami R, Nejati V. Cognitive control dysfunction in emotion dysregulation and psychopathology of major depression (MD): evidence from transcranial brain stimulation of the dorsolateral prefrontal cortex (DLPFC) J. Affect. Disord. 2017;210:241–248. doi: 10.1016/j.jad.2016.12.036.
    1. Hakamata Y, et al. Attention bias modification treatment: a meta-analysis toward the establishment of novel treatment for anxiety. Biol. Psychiat. 2010;68:982–990. doi: 10.1016/j.biopsych.2010.07.021.
    1. Hartley CA, Phelps EA. Changing fear: the neurocircuitry of emotion regulation. Neuropsychopharmacology. 2010;35:136. doi: 10.1038/npp.2009.121.
    1. Nejati V, Salehinejad MA, Sabayee A. Impaired working memory updating affects memory for emotional and non-emotional materials the same way: evidence from post-traumatic stress disorder (PTSD) Cogn. Process. 2018;19:53–62. doi: 10.1007/s10339-017-0837-2.
    1. Watkins E, Brown R. Rumination and executive function in depression: An experimental study. J. Neurol. Neurosurg. Psychiatry. 2002;72:400–402. doi: 10.1136/jnnp.72.3.400.
    1. Koenigs M, Grafman J. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav. Brain Res. 2009;201:239–243. doi: 10.1016/j.bbr.2009.03.004.
    1. Nejati V, Salehinejad MA, Nitsche MA. Interaction of the left dorsolateral prefrontal cortex (l-DLPFC) and right orbitofrontal cortex (OFC) in hot and cold executive functions: evidence from transcranial direct current stimulation (tDCS) Neuroscience. 2018;369:109–123. doi: 10.1016/j.neuroscience.2017.10.042.
    1. Gray JR. Emotional modulation of cognitive control: approach–withdrawal states double-dissociate spatial from verbal two-back task performance. J. Exp. Psychol. Gen. 2001;130:436. doi: 10.1037/0096-3445.130.3.436.
    1. Van Reekum CM, et al. Individual differences in amygdala and ventromedial prefrontal cortex activity are associated with evaluation speed and psychological well-being. J. Cogn. Neurosci. 2007;19:237–248. doi: 10.1162/jocn.2007.19.2.237.
    1. Heller AS, et al. Sustained striatal activity predicts eudaimonic well-being and cortisol output. Psychol. Sci. 2013;24:2191–2200. doi: 10.1177/0956797613490744.
    1. Perlstein WM, Elbert T, Stenger VA. Dissociation in human prefrontal cortex of affective influences on working memory-related activity. Proc. Natl. Acad. Sci. 2002;99:1736–1741. doi: 10.1073/pnas.241650598.
    1. Phan KL, et al. Activation of the medial prefrontal cortex and extended amygdala by individual ratings of emotional arousal: a fMRI study. Biol. Psychiat. 2003;53:211–215. doi: 10.1016/S0006-3223(02)01485-3.
    1. Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat. Neurosci. 2018;21:174–187. doi: 10.1038/s41593-017-0054-4.
    1. Vicario CM, Salehinejad MA, Felmingham K, Martino G, Nitsche MA. A systematic review on the therapeutic effectiveness of non-invasive brain stimulation for the treatment of anxiety disorders. Neurosci. Biobehav. Rev. 2019;96:219–231. doi: 10.1016/j.neubiorev.2018.12.012.
    1. Nitsche M, et al. Effects of frontal transcranial direct current stimulation on emotional state and processing in healthy humans. Front. Psychiatry. 2012 doi: 10.3389/fpsyt.2012.00058.
    1. Salehinejad MA, Wischnewski M, Nejati V, Vicario CM, Nitsche MA. Transcranial direct current stimulation in attention-deficit hyperactivity disorder: a meta-analysis of neuropsychological deficits. PLoS ONE. 2019;14:e0215095. doi: 10.1371/journal.pone.0215095.
    1. Ghanavati E, Nejati V, Salehinejad MA. Transcranial direct current stimulation over the posterior parietal cortex (PPC) enhances figural fluency: implications for creative cognition. J. Cogn. Enhanc. 2018;2:88–96. doi: 10.1007/s41465-017-0059-7.
    1. Kuo, M.-F., Polanía, R. & Nitsche, M. in Transcranial Direct Current Stimulation in Neuropsychiatric Disorders: Clinical Principles and Management (eds André Brunoni, Michael Nitsche, & Colleen Loo) 29–46 (Springer International Publishing, 2016).
    1. Salehinejad MA, Ghanavati E. Complexity of cathodal tDCS: relevance of stimulation repetition, interval, and intensity. J. Physiol. . 2020 doi: 10.1113/jp279409.
    1. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000;527:633–639. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x.
    1. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57:1899–1901. doi: 10.1212/WNL.57.10.1899.
    1. Vanderhasselt M-A, et al. tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli. PLoS ONE. 2013;8:e62219. doi: 10.1371/journal.pone.0062219.
    1. Nitsche MA, et al. Effects of frontal transcranial direct current stimulation on emotional state and processing in healthy humans. Front. Psychiatry. 2012;3:58. doi: 10.3389/fpsyt.2012.00058.
    1. Cattaneo Z, et al. The world can look better: enhancing beauty experience with brain stimulation. Soc. Cogn. Affect. Neurosci. 2014;9:1713–1721. doi: 10.1093/scan/nst165.
    1. Maeoka H, Matsuo A, Hiyamizu M, Morioka S, Ando H. Influence of transcranial direct current stimulation of the dorsolateral prefrontal cortex on pain related emotions: a study using electroencephalographic power spectrum analysis. Neurosci. Lett. 2012;512:12–16. doi: 10.1016/j.neulet.2012.01.037.
    1. Pena-Gomez C, Vidal-Pineiro D, Clemente IC, Pascual-Leone A, Bartres-Faz D. Down-regulation of negative emotional processing by transcranial direct current stimulation: effects of personality characteristics. PLoS ONE. 2011;6:e22812. doi: 10.1371/journal.pone.0022812.
    1. Sanchez-Lopez A, Vanderhasselt M-A, Allaert J, Baeken C, De Raedt R. Neurocognitive mechanisms behind emotional attention: Inverse effects of anodal tDCS over the left and right DLPFC on gaze disengagement from emotional faces. Cogn. Affect. Behav. Neurosci. 2018;18:485–494. doi: 10.3758/s13415-018-0582-8.
    1. Grimm S, et al. Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: an fMRI study in severe major depressive disorder. Biol. Psychiatry. 2008;63:369–376. doi: 10.1016/j.biopsych.2007.05.033.
    1. Allaert J, Sanchez-Lopez A, De Raedt R, Baeken C, Vanderhasselt M-A. Inverse effects of tDCS over the left versus right DLPC on emotional processing: a pupillometry study. PLoS ONE. 2019;14:e0218327. doi: 10.1371/journal.pone.0218327.
    1. Price AR, Hamilton RH. A re-evaluation of the cognitive effects from single-session transcranial direct current stimulation. Brain Stimul. 2015;8:663–665. doi: 10.1016/j.brs.2015.03.007.
    1. Imburgio MJ, Orr JM. Effects of prefrontal tDCS on executive function: methodological considerations revealed by meta-analysis. Neuropsychologia. 2018;117:156–166. doi: 10.1016/j.neuropsychologia.2018.04.022.
    1. Salehinejad MA, Ghayerin E, Nejati V, Yavari F, Nitsche MA. Domain-specific involvement of the posterior parietal cortex in attention network and attentional control of ADHD: a randomized, cross-over, sham-controlled tDCS study. Neuroscience. 2020 doi: 10.1016/j.neuroscience.2020.07.037.
    1. Salehinejad MA, et al. Transcranial direct current stimulation in ADHD: a systematic review of efficacy, safety, and protocol-induced electrical field modeling results. Neurosci. Bull. 2020 doi: 10.1007/s12264-020-00501-x.
    1. Moos K, Vossel S, Weidner R, Sparing R, Fink GR. Modulation of Top-down control of visual attention by cathodal tDCS over right IPS. J. Neurosci. 2012;32:16360–16368. doi: 10.1523/jneurosci.6233-11.2012.
    1. Kajimura S, Kochiyama T, Nakai R, Abe N, Nomura M. Causal relationship between effective connectivity within the default mode network and mind-wandering regulation and facilitation. NeuroImage. 2016;133:21–30. doi: 10.1016/j.neuroimage.2016.03.009.
    1. Faul, F., Erdfelder, E., Buchner, A. & Lang, A. (2013).
    1. Minarik T, et al. The importance of sample size for reproducibility of tDCS effects. Front. Hum. Neurosci. 2016 doi: 10.3389/fnhum.2016.00453.
    1. Bradley MM, Lang PJ. Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry. 1994;25:49–59. doi: 10.1016/0005-7916(94)90063-9.
    1. Lang, P. J., Bradley, M. M. & Cuthbert, B. N. International affective picture system (IAPS): Technical manual and affective ratings. NIMH Center for the Study of Emotion and Attention, 39–58 (1997).
    1. Stagg CJ, et al. Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex. J. Neurosci. 2013;33:11425–11431. doi: 10.1523/JNEUROSCI.3887-12.2013.
    1. Zheng H, et al. Modulating the activity of ventromedial prefrontal cortex by anodal tDCS enhances the trustee’s repayment through altruism. Front. Psychol. 2016;7:1437.
    1. Palm U, et al. Evaluation of sham transcranial direct current stimulation for randomized, placebo-controlled clinical trials. Brain Stimul. 2013;6:690–695. doi: 10.1016/j.brs.2013.01.005.
    1. Boggio PS, Zaghi S, Fregni F. Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS) Neuropsychologia. 2009;47:212–217. doi: 10.1016/j.neuropsychologia.2008.07.022.
    1. Molavi, P. et al. Repeated transcranial direct current stimulation of dorsolateral-prefrontal cortex improves executive functions, cognitive reappraisal emotion regulation, and control over emotional processing in borderline personality disorder: a randomized, sham-controlled, parallel-group study. J. Affect. Disord. (2020).
    1. Nejati V. Negative interpretation of social cue in depression: Evidence from reading mind from eyes test. Neurol. Psychiatry Brain Res. 2018;27:12–16. doi: 10.1016/j.npbr.2017.11.001.
    1. Ajilchi B, Kisely S, Nejati V, Frederickson J. Effects of intensive short-term dynamic psychotherapy on social cognition in major depression. J. Mental Health. 2020;29:40–44. doi: 10.1080/09638237.2018.1466035.
    1. Roshani F, Nejati V, Fathabadi J. Effect of interpretation bias modification on remediation of behavioral and cognitive symptoms in depression. J. Psychol. Sci. 2020;19:1–10.
    1. Nejati V, Fathi E, Shahidi S, Salehinejad MA. Cognitive training for modifying interpretation and attention bias in depression: relevance to mood improvement and implications for cognitive intervention in depression. Asian J. Psychiatry. 2019;39:23–28. doi: 10.1016/j.ajp.2018.11.012.
    1. Feeser M, Prehn K, Kazzer P, Mungee A, Bajbouj M. Transcranial direct current stimulation enhances cognitive control during emotion regulation. Brain stimulation. 2014;7:105–112. doi: 10.1016/j.brs.2013.08.006.
    1. Winker C, et al. Noninvasive stimulation of the ventromedial prefrontal cortex modulates emotional face processing. Neuroimage. 2018;175:388–401. doi: 10.1016/j.neuroimage.2018.03.067.
    1. Anders S, Lotze M, Erb M, Grodd W, Birbaumer N. Brain activity underlying emotional valence and arousal: a response-related fMRI study. Hum. Brain Mapp. 2004;23:200–209. doi: 10.1002/hbm.20048.
    1. Kensinger EA, Schacter DL. Processing emotional pictures and words: effects of valence and arousal. Cogn., Affect. Behav. Neurosci. 2006;6:110–126. doi: 10.3758/CABN.6.2.110.
    1. Jerram M, Lee A, Negreira A, Gansler D. The neural correlates of the dominance dimension of emotion. Psychiatry Res. Neuroimaging. 2014;221:135–141. doi: 10.1016/j.pscychresns.2013.11.007.
    1. Colibazzi T, et al. Neural systems subserving valence and arousal during the experience of induced emotions. Emotion. 2010;10:377. doi: 10.1037/a0018484.
    1. Posner J, Russell JA, Peterson BS. The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 2005;17:715–734. doi: 10.1017/S0954579405050340.
    1. Kringelbach ML, O’Doherty J, Rolls ET, Andrews C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb. Cortex. 2003;13:1064–1071. doi: 10.1093/cercor/13.10.1064.
    1. Soder HE, Potts GF. Medial frontal cortex response to unexpected motivationally salient outcomes. Int. J. Psychophysiol. 2018;132:268–276. doi: 10.1016/j.ijpsycho.2017.11.003.
    1. Strobach T, et al. Modulation of dual-task control with right prefrontal transcranial direct current stimulation (tDCS) Exp. Brain Res. 2018;236:227–241. doi: 10.1007/s00221-017-5121-2.
    1. Shahbabaie A, et al. State dependent effect of transcranial direct current stimulation (tDCS) on methamphetamine craving. Int. J. Neuropsychopharmacol. 2014;17:1591–1598. doi: 10.1017/s1461145714000686.
    1. Salehinejad MA, Nejati V, Derakhshan M. Neural correlates of trait resiliency: evidence from electrical stimulation of the dorsolateral prefrontal cortex (dLPFC) and orbitofrontal cortex (OFC) Pers. Individ. Differ. 2017;106:209–216. doi: 10.1016/j.paid.2016.11.005.
    1. Coplan JD, Webler R, Gopinath S, Abdallah CG, Mathew SJ. Neurobiology of the dorsolateral prefrontal cortex in GAD: aberrant neurometabolic correlation to hippocampus and relationship to anxiety sensitivity and IQ. J. Affect. Disord. 2018;229:1–13. doi: 10.1016/j.jad.2017.12.001.
    1. Williams JMG, Watts FN, MacLeod C, Mathews A. Cognitive Psychology and Emotional Disorders. Oxford: Wiley; 1988.
    1. Fitzgerald PB, et al. An analysis of functional neuroimaging studies of dorsolateral prefrontal cortical activity in depression. Psychiatry Res. Neuroimaging. 2006;148:33–45. doi: 10.1016/j.pscychresns.2006.04.006.
    1. Hiser, J. & Koenigs, M. The multifaceted role of ventromedial prefrontal cortex in emotion, decision-making, social cognition, and psychopathology. Biol. Psychiatry (2017).
    1. Vicario CM, et al. Anodal transcranial direct current stimulation over the ventromedial prefrontal cortex enhances fear extinction in healthy humans: a single blind sham-controlled study. Brain Stimul. 2019 doi: 10.1016/j.brs.2019.12.022.
    1. Vicario, C. M. et al. Anodal transcranial direct current stimulation over the ventromedial prefrontal cortex enhances fear extinction in healthy humans: a single blind sham-controlled study. Brain Stimul. Basic Transl. Clin. Res. Neuromodul. (2019).
    1. Arent SM, Landers DM. Arousal, anxiety, and performance: a reexamination of the inverted-U hypothesis. Res. Q. Exerc. Sport. 2003;74:436–444. doi: 10.1080/02701367.2003.10609113.
    1. Groenewold NA, Opmeer EM, de Jonge P, Aleman A, Costafreda SG. Emotional valence modulates brain functional abnormalities in depression: evidence from a meta-analysis of fMRI studies. Neurosci. Biobehav. Rev. 2013;37:152–163. doi: 10.1016/j.neubiorev.2012.11.015.
    1. Rubin-Falcone H, et al. Longitudinal effects of cognitive behavioral therapy for depression on the neural correlates of emotion regulation. Psychiatry Res. Neuroimaging. 2018;271:82–90. doi: 10.1016/j.pscychresns.2017.11.002.
    1. Hofmann SG, Heering S, Sawyer AT, Asnaani A. How to handle anxiety: the effects of reappraisal, acceptance, and suppression strategies on anxious arousal. Behav. Res. Ther. 2009;47:389–394. doi: 10.1016/j.brat.2009.02.010.
    1. Bremner JD. Brain imaging in anxiety disorders. Expert Rev. Neurother. 2004;4:275–284. doi: 10.1586/14737175.4.2.275.
    1. Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron. 2005;48:175–187. doi: 10.1016/j.neuron.2005.09.025.
    1. Milad MR, et al. Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proc. Natl. Acad. Sci. 2005;102:10706–10711. doi: 10.1073/pnas.0502441102.
    1. Ochsner KN, Gross JJ. The cognitive control of emotion. Trends Cogn. Sci. 2005;9:242–249. doi: 10.1016/j.tics.2005.03.010.
    1. Milad MR, et al. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol. Psychiatry. 2007;62:446–454. doi: 10.1016/j.biopsych.2006.10.011.
    1. Rothbaum BO, Davis M. Applying learning principles to the treatment of post-trauma reactions. Ann. N. Y. Acad. Sci. 2003;1008:112–121. doi: 10.1196/annals.1301.012.
    1. Paes F, et al. Repetitive transcranial magnetic stimulation (rTMS) to treat social anxiety disorder: case reports and a review of the literature. Clin. Pract. Epidemiol. Mental Health CP & EMH. 2013;9:180. doi: 10.2174/1745017901309010180.
    1. Ochsner KN, Bunge SA, Gross JJ, Gabrieli JD. Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J. Cogn. Neurosci. 2002;14:1215–1229. doi: 10.1162/089892902760807212.
    1. Notzon S, Steinberg C, Zwanzger P, Junghöfer M. Modulating emotion perception: Opposing effects of inhibitory and excitatory prefrontal cortex stimulation. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 2018;3:329–336.
    1. Ajilchi B, Nejati V. Executive functions in students with depression, anxiety, and stress symptoms. Basic Clin. Neurosci. 2017;8:223. doi: 10.18869/nirp.bcn.8.3.223.
    1. Ajilchi B, Nejati V, Town JM, Wilson R, Abbass A. Effects of intensive short-term dynamic psychotherapy on depressive symptoms and executive functioning in major depression. J. Nerv. Mental Dis. 2016;204:500–505. doi: 10.1097/NMD.0000000000000518.
    1. Nejati V, Salehinejad MA, Shahidi N, Abedin A. Corrigendum to Psychological intervention combined with direct electrical brain stimulation (PIN-CODES) for treating major depression: a pre-test, post-test, follow-up pilot study [Neurol. Psychiatry Brain Res. 25 (2017) 15–23] Neurol. Psychiatry Brain Res. 2017;25:15–23. doi: 10.1016/j.npbr.2017.05.003.
    1. Vanderhasselt M-a, De Raedt R, Baeken C, Leyman L, D’haenen H. A single session of rTMS over the left dorsolateral prefrontal cortex influences attentional control in depressed patients. World J. Biol. Psychiatry. 2009;10:34–42. doi: 10.1080/15622970701816514.
    1. Ekman P, et al. Universals and cultural differences in the judgments of facial expressions of emotion. J. Pers. Soc. Psychol. 1987;53:712. doi: 10.1037/0022-3514.53.4.712.
    1. Lindquist KA, Wager TD, Kober H, Bliss-Moreau E, Barrett LF. The brain basis of emotion: a meta-analytic review. Behav. Brain Sci. 2012;35:121–143. doi: 10.1017/S0140525X11000446.
    1. Kirkland T, Cunningham WA. Neural basis of affect and emotion. Wiley Interdiscip. Rev. Cogn. Sci. 2011;2:656–665. doi: 10.1002/wcs.145.

Source: PubMed

3
Suscribir