Noninvasive Detection of Tuberculosis by Oral Swab Analysis

Angelique K Luabeya, Rachel C Wood, Justin Shenje, Elizabeth Filander, Cynthia Ontong, Simbarashe Mabwe, Hadn Africa, Felicia K Nguyen, Alaina Olson, Kris M Weigel, Lisa Jones-Engel, Mark Hatherill, Gerard A Cangelosi, Angelique K Luabeya, Rachel C Wood, Justin Shenje, Elizabeth Filander, Cynthia Ontong, Simbarashe Mabwe, Hadn Africa, Felicia K Nguyen, Alaina Olson, Kris M Weigel, Lisa Jones-Engel, Mark Hatherill, Gerard A Cangelosi

Abstract

Diagnostic tests for tuberculosis (TB) usually require collection of sputum, a viscous material derived from human airways. Sputum can be difficult and hazardous to collect and challenging to process in the laboratory. Oral swabs have been proposed as alternative sample types that are noninvasive and easy to collect. This study evaluated the biological feasibility of oral swab analysis (OSA) for the diagnosis of TB. Swabs were tested from South African adult subjects, including sputum GeneXpert MTB/RIF (GeneXpert)-confirmed TB patients (n = 138), sputum GeneXpert-negative but culture-positive TB patients (n = 10), ill non-TB patients (n = 37), and QuantiFERON-negative controls (n = 34). Swabs were analyzed by using a manual, nonnested quantitative PCR (qPCR) targeting IS6110 Two swab brands and three sites within the oral cavity were compared. Tongue swabbing yielded significantly stronger signals than cheek or gum swabbing. A flocked swab performed better than a more expensive paper swab. In a two-phase study, tongue swabs (two per subject) exhibited a combined sensitivity of 92.8% relative to sputum GeneXpert. Relative to all laboratory-diagnosed TB, the diagnostic yields of sputum GeneXpert (1 sample per subject) and OSA (2 samples per subject) were identical at 49/59 (83.1%) each. The specificity of the OSA was 91.5%. An analysis of "air swabs" suggested that most false-positive results were due to contamination of manual PCRs. With the development of appropriate automated methods, oral swabs could facilitate TB diagnosis in clinical settings and patient populations that are limited by the physical or logistical challenges of sputum collection.

Keywords: GeneXpert MTB/RIF; PCR; POC; molecular diagnosis; nonsputum sampling; oral swab; point of care; tuberculosis.

Copyright © 2019 Luabeya et al.

Figures

FIG 1
FIG 1
Flow diagram of subject enrollment and testing by OSA. Total subjects enrolled in the study (combined n = 343) are shown in the top row of boxes. The bottom row shows subjects tested by OSA (combined n = 221).

References

    1. World Health Organization. 2017. Global tuberculosis report 2017. World Health Organization, Geneva, Switzerland.
    1. Lawn SD, Mwaba P, Bates M, Piatek A, Alexander H, Marais BJ, Cuevas LE, McHugh TD, Zijenah L, Kapata N, Abubakar I, McNerney R, Hoelscher M, Memish ZA, Migliori GB, Kim P, Maeurer M, Schito M, Zumla A. 2013. Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test. Lancet Infect Dis 13:349–361. doi:10.1016/S1473-3099(13)70008-2.
    1. Shenai S, Amisano D, Ronacher K, Kriel M, Banada PP, Song T, Lee M, Joh JS, Winter J, Thayer R, Via LE, Kim S, Barry CE, Walzl G, Alland D. 2013. Exploring alternative biomaterials for diagnosis of pulmonary tuberculosis in HIV-negative patients by use of the GeneXpert MTB/RIF assay. J Clin Microbiol 51:4161–4166. doi:10.1128/JCM.01743-13.
    1. Lawn SD. 2013. Diagnosis of pulmonary tuberculosis. Curr Opin Pulm Med 19:280–288. doi:10.1097/MCP.0b013e32835f1b70.
    1. Denkinger CM, Pai M. 2012. Point-of-care tuberculosis diagnosis: are we there yet? Lancet Infect Dis 12:169–170. doi:10.1016/S1473-3099(11)70257-2.
    1. Mendelson M. 2007. Diagnosing tuberculosis in HIV-infected patients: challenges and future prospects. Br Med Bull 81-82:149–165. doi:10.1093/bmb/ldm009.
    1. Bourdillon PM, Goncalves CC, Pelissari DM, Arakaki-Sanchez D, Ko AI, Croda J, Andrews JR. 2017. Increase in tuberculosis cases among prisoners, Brazil, 2009–2014. Emerg Infect Dis 23:496–499. doi:10.3201/eid2303.161006.
    1. Paião DS, Lemos EF, Carbone AD, Sgarbi RV, Junior AL, da Silva FM, Brandão LM, Dos Santos LS, Martins VS, Simionatto S, Motta-Castro AR, Pompílio MA, Urrego J, Ko AI, Andrews JR, Croda J. 2016. Impact of mass-screening on tuberculosis incidence in a prospective cohort of Brazilian prisoners. BMC Infect Dis 16:533. doi:10.1186/s12879-016-1868-5.
    1. Carbone Ada S, Paião DS, Sgarbi RV, Lemos EF, Cazanti RF, Ota MM, Junior AL, Bampi JV, Elias VP, Simionatto S, Motta-Castro AR, Pompílio MA, de Oliveira SM, Ko AI, Andrews JR, Croda J. 2015. Active and latent tuberculosis in Brazilian correctional facilities: a cross-sectional study. BMC Infect Dis 15:24. doi:10.1186/s12879-015-0764-8.
    1. Sacchi SFP, Praca RM, Tatara MB, Simonsen V, Ferrazoli L, Croda MG, Suffys PN, Ko AI, Andrews JR, Croda J. 2015. Prisons as reservoir for community transmission of tuberculosis, Brazil. Emerg Infect Dis 21:452–455. doi:10.3201/eid2103.140896.
    1. Fauci AS, Eisinger RW. 2018. Reimagining the research approach to tuberculosis. Am J Trop Med Hyg 98:650–652. doi:10.4269/ajtmh.17-0999.
    1. Nicol MP, Spiers K, Workman L, Isaacs W, Munro J, Black F, Zemanay W, Zar HJ. 2013. Xpert MTB/RIF testing of stool samples for the diagnosis of pulmonary tuberculosis in children. Clin Infect Dis 57:e18–e21. doi:10.1093/cid/cit230.
    1. Shah M, Hanrahan C, Wang ZY, Dendukuri N, Lawn SD, Denkinger CM, Steingart KR. 2016. Lateral flow urine lipoarabinomannan assay for detecting active tuberculosis in HIV-positive adults. Cochrane Database Syst Rev 10:CD011420.
    1. Paris L, Magni R, Zaidi F, Araujo R, Saini N, Harpole M, Coronel J, Kirwan DE, Steinberg H, Gilman RH, Petricoin EF, Nisini R, Luchini A, Liotta L. 2017. Urine lipoarabinomannan glycan in HIV-negative patients with pulmonary tuberculosis correlates with disease severity. Sci Transl Med 9:eaal2807. doi:10.1126/scitranslmed.aal2807.
    1. Gupta-Wright A, Fielding KL, van Oosterhout JJ, Wilson DK, Corbett EL, Flach C, Reddy KP, Walensky RP, Peters JA, Alufandika-Moyo M, Lawn SD. 2016. Rapid urine-based screening for tuberculosis to reduce AIDS-related mortality in hospitalized patients in Africa (the STAMP trial): study protocol for a randomised controlled trial. BMC Infect Dis 16:501. doi:10.1186/s12879-016-1837-z.
    1. Wood RC, Luabeya AK, Weigel KM, Wilbur AK, Jones-Engel L, Hatherill M, Cangelosi GA. 2015. Detection of Mycobacterium tuberculosis DNA on the oral mucosa of tuberculosis patients. Sci Rep 5:8668. doi:10.1038/srep08668.
    1. Engel GA, Wilbur AK, Westmark A, Horn D, Johnson J, Jones-Engel L. 2012. Naturally acquired Mycobacterium tuberculosis complex in laboratory pig-tailed macaques. Emerg Microbes Infect 1:e30. doi:10.1038/emi.2012.31.
    1. Wilbur AK, Engel GA, Rompis A, Putra IG, Lee BP, Aggimarangsee N, Chalise M, Shaw E, Oh G, Schillaci MA, Jones-Engel L. 2012. From the mouths of monkeys: detection of Mycobacterium tuberculosis complex DNA from buccal swabs of synanthropic macaques. Am J Primatol 74:676–686. doi:10.1002/ajp.22022.
    1. Yamazaki Y, Danelishvili L, Wu M, Hidaka E, Katsuyama T, Stang B, Petrofsky M, Bildfell R, Bermudez LE. 2006. The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells. Cell Microbiol 8:806–814. doi:10.1111/j.1462-5822.2005.00667.x.
    1. Silva CAM, Danelishvili L, McNamara M, Berredo-Pinho M, Bildfell R, Biet F, Rodrigues LS, Oliveira AV, Bermudez LE, Pessolani MCV. 2013. Interaction of Mycobacterium leprae with human airway epithelial cells: adherence, entry, survival, and identification of potential adhesins by surface proteome analysis. Infect Immun 81:2645–2659. doi:10.1128/IAI.00147-13.
    1. Freeman R, Geier H, Weigel KM, Do J, Ford TE, Cangelosi GA. 2006. Roles for cell wall glycopeptidolipid in surface adherence and planktonic dispersal of Mycobacterium avium. Appl Environ Microbiol 72:7554–7558. doi:10.1128/AEM.01633-06.
    1. Geier H, Mostowy S, Cangelosi GA, Behr MA, Ford TE. 2008. Autoinducer-2 triggers the oxidative stress response in Mycobacterium avium, leading to biofilm formation. Appl Environ Microbiol 74:1798–1804. doi:10.1128/AEM.02066-07.
    1. Falkinham JOI, Norton CD, LeChevallier MW. 2001. Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl Environ Microbiol 67:1225–1231. doi:10.1128/AEM.67.3.1225-1231.2001.
    1. McBride CM, Wade CH, Kaphingst KA. 2010. Consumers’ views of direct-to-consumer genetic information. Annu Rev Genomics Hum Genet 11:427–446. doi:10.1146/annurev-genom-082509-141604.
    1. Halse TA, Edwards J, Cunningham PL, Wolfgang WJ, Dumas NB, Escuyer VE, Musser KA. 2010. Combined real-time PCR and rpoB gene pyrosequencing for rapid identification of Mycobacterium tuberculosis and determination of rifampin resistance directly in clinical specimens. J Clin Microbiol 48:1182–1188. doi:10.1128/JCM.02149-09.
    1. Savelkoul PHM, Catsburg A, Mulder S, Oostendorp L, Schirm J, Wilke H, van der Zanden AGM, Noordhoek GT. 2006. Detection of Mycobacterium tuberculosis complex with real time PCR: comparison of different primer-probe sets based on the IS6110 element. J Microbiol Methods 66:177–180. doi:10.1016/j.mimet.2005.12.003.
    1. Dawes C. 1972. Circadian rhythms in human salivary flow rate and composition. J Physiol 220:529–545. doi:10.1113/jphysiol.1972.sp009721.

Source: PubMed

3
Suscribir