Controlled Human Malaria Infection in Semi-Immune Kenyan Adults (CHMI-SIKA): a study protocol to investigate in vivo Plasmodium falciparum malaria parasite growth in the context of pre-existing immunity

Melissa C Kapulu, Patricia Njuguna, Mainga M Hamaluba, CHMI-SIKA Study Team, Melissa C Kapulu, Patricia Njuguna, Mainga M Hamaluba, CHMI-SIKA Study Team

Abstract

Malaria remains a major public health burden despite approval for implementation of a partially effective pre-erythrocytic malaria vaccine. There is an urgent need to accelerate development of a more effective multi-stage vaccine. Adults in malaria endemic areas may have substantial immunity provided by responses to the blood stages of malaria parasites, but field trials conducted on several blood-stage vaccines have not shown high levels of efficacy. We will use the controlled human malaria infection (CHMI) models with malaria-exposed volunteers to identify correlations between immune responses and parasite growth rates in vivo. Immune responses more strongly associated with control of parasite growth should be prioritized to accelerate malaria vaccine development. We aim to recruit up to 200 healthy adult volunteers from areas of differing malaria transmission in Kenya, and after confirming their health status through clinical examination and routine haematology and biochemistry, we will comprehensively characterize immunity to malaria using >100 blood-stage antigens. We will administer 3,200 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (PfSPZ Challenge) by direct venous inoculation. Serial quantitative polymerase chain reaction to measure parasite growth rate in vivo will be undertaken. Clinical and laboratory monitoring will be undertaken to ensure volunteer safety. In addition, we will also explore the perceptions and experiences of volunteers and other stakeholders in participating in a malaria volunteer infection study. Serum, plasma, peripheral blood mononuclear cells and whole blood will be stored to allow a comprehensive assessment of adaptive and innate host immunity. We will use CHMI in semi-immune adult volunteers to relate parasite growth outcomes with antibody responses and other markers of host immunity. Registration: ClinicalTrials.gov identifier NCT02739763.

Keywords: Kenya; PfSPZ Challenge; Plasmodium falciparum; blood-stage; controlled human malaria infection; immunity; parasite growth; quantitative PCR.

Conflict of interest statement

No competing interests were disclosed.

Copyright: © 2019 Kapulu MC et al.

Figures

Figure 1.. Schematic of CHMI PfSPZ challenge…
Figure 1.. Schematic of CHMI PfSPZ challenge study profile.

References

    1. WHO: World Malaria Report 2017. Geneva, Switzerland;2017.
    1. Snow RW, Sartorius B, Kyalo D, et al. : The prevalence of Plasmodium falciparum in sub-Saharan Africa since 1900. Nature. 2017;550(7677):515–518. 10.1038/nature24059
    1. Tatem AJ, Smith DL, Gething PW, et al. : Ranking of elimination feasibility between malaria-endemic countries. Lancet. 2010;376(9752):1579–1591. 10.1016/S0140-6736(10)61301-3
    1. Corbel V, Akogbeto M, Damien GB, et al. : Combination of malaria vector control interventions in pyrethroid resistance area in Benin: a cluster randomised controlled trial. Lancet Infect Dis. 2012;12(8):617–626. 10.1016/S1473-3099(12)70081-6
    1. Dondorp AM, Nosten F, Yi P, et al. : Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361(5):455–467. 10.1056/NEJMoa0808859
    1. Greenwood BM, Targett GA: Malaria vaccines and the new malaria agenda. Clin Microbiol Infect. 2011;17(11):1600–1607. 10.1111/j.1469-0691.2011.03612.x
    1. RTS,S Clinical Trials Partnership, . Agnandji ST, Lell B, et al. : A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N Engl J Med. 2012;367(24):2284–2295. 10.1056/NEJMoa1208394
    1. RTS,S Clinical Trials Partnership, . Agnandji ST, Lell B, et al. : First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N Engl J Med. 2011;365(20):1863–1875. 10.1056/NEJMoa1102287
    1. Olotu A, Fegan G, Wambua J, et al. : Four-year efficacy of RTS,S/AS01E and its interaction with malaria exposure. N Engl J Med. 2013;368(12):1111–1120. 10.1056/NEJMoa1207564
    1. Epstein JE, Paolino KM, Richie TL, et al. : Protection against Plasmodium falciparum malaria by PfSPZ Vaccine. JCI Insight. 2017;2(1):e89154. 10.1172/jci.insight.89154
    1. Sissoko MS, Healy SA, Katile A, et al. : Safety and efficacy of PfSPZ Vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-blind phase 1 trial. Lancet Infect Dis. 2017;17(5):498–509. 10.1016/S1473-3099(17)30104-4
    1. Ogutu BR, Apollo OJ, McKinney D, et al. : Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya. PLoS One. 2009;4(3):e4708. 10.1371/journal.pone.0004708
    1. Genton B, Betuela I, Felger I, et al. : A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1-2b trial in Papua New Guinea. J Infect Dis. 2002;185(6):820–827. 10.1086/339342
    1. Thera MA, Doumbo OK, Coulibaly D, et al. : A field trial to assess a blood-stage malaria vaccine. N Engl J Med. 2011;365(11):1004–1013. 10.1056/NEJMoa1008115
    1. Bull PC, Lowe BS, Kortok M, et al. : Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat Med. 1998;4(3):358–360. 10.1038/nm0398-358
    1. Osier FH, Fegan G, Polley SD, et al. : Breadth and magnitude of antibody responses to multiple Plasmodium falciparum merozoite antigens are associated with protection from clinical malaria. Infect Immun. 2008;76(5):2240–2248. 10.1128/IAI.01585-07
    1. Osier FH, Mackinnon MJ, Crosnier C, et al. : New antigens for a multicomponent blood-stage malaria vaccine. Sci Transl Med. 2014;6(247):247ra102. 10.1126/scitranslmed.3008705
    1. Murungi LM, Kamuyu G, Lowe B, et al. : A threshold concentration of anti-merozoite antibodies is required for protection from clinical episodes of malaria. Vaccine. 2013;31(37):3936–3942. 10.1016/j.vaccine.2013.06.042
    1. Bejon P, Warimwe G, Mackintosh CL, et al. : Analysis of immunity to febrile malaria in children that distinguishes immunity from lack of exposure. Infect Immun. 2009;77(5):1917–1923. 10.1128/IAI.01358-08
    1. Manske M, Miotto O, Campino S, et al. : Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature. 2012;487(7407):375–379. 10.1038/nature11174
    1. Bejon P, Cook J, Bergmann-Leitner E, et al. : Effect of the pre-erythrocytic candidate malaria vaccine RTS,S/AS01 E on blood stage immunity in young children. J Infect Dis. 2011;204(1):9–18. 10.1093/infdis/jir222
    1. Drakeley CJ, Corran PH, Coleman PG, et al. : Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci U S A. 2005;102(14):5108–5113. 10.1073/pnas.0408725102
    1. Douglas AD, Williams AR, Illingworth JJ, et al. : The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. Nat Commun. 2011;2: 601. 10.1038/ncomms1615
    1. Roestenberg M, Bijker EM, Sim BK, et al. : Controlled human malaria infections by intradermal injection of cryopreserved Plasmodium falciparum sporozoites. Am J Trop Med Hyg. 2013;88(1):5–13. 10.4269/ajtmh.2012.12-0613
    1. Sheehy SH, Spencer AJ, Douglas AD, et al. : Optimising Controlled Human Malaria Infection Studies Using Cryopreserved P. falciparum Parasites Administered by Needle and Syringe.Ellis RD, ed. PLoS One. 2013;8(6):e65960. 10.1371/journal.pone.0065960
    1. Shekalaghe S, Rutaihwa M, Billingsley PF, et al. : Controlled human malaria infection of Tanzanians by intradermal injection of aseptic, purified, cryopreserved Plasmodium falciparum sporozoites. Am J Trop Med Hyg. 2014;91(3):471–480. 10.4269/ajtmh.14-0119
    1. Hodgson SH, Juma E, Salim A, et al. : Evaluating controlled human malaria infection in Kenyan adults with varying degrees of prior exposure to Plasmodium falciparum using sporozoites administered by intramuscular injection. Front Microbiol. 2014;5:686. 10.3389/fmicb.2014.00686
    1. Gómez-Pérez GP, Legarda A, Muñoz J, et al. : Controlled human malaria infection by intramuscular and direct venous inoculation of cryopreserved Plasmodium falciparum sporozoites in malaria-naïve volunteers: effect of injection volume and dose on infectivity rates. Malar J. 2015;14(1):306. 10.1186/s12936-015-0817-x
    1. Mordmüller B, Supan C, Sim KL, et al. : Direct venous inoculation of Plasmodium falciparum sporozoites for controlled human malaria infection: a dose-finding trial in two centres. Malar J. 2015;14(1):117. 10.1186/s12936-015-0628-0
    1. Lell B, Mordmüller B, Dejon Agobe JC, et al. : Impact of Sickle Cell Trait and Naturally Acquired Immunity on Uncomplicated Malaria after Controlled Human Malaria Infection in Adults in Gabon. Am J Trop Med Hyg. 2018;98(2):508–515. 10.4269/ajtmh.17-0343
    1. Jongo SA, Shekalaghe SA, Church LWP, et al. : Safety, Immunogenicity, and Protective Efficacy against Controlled Human Malaria Infection of Plasmodium falciparum Sporozoite Vaccine in Tanzanian Adults. Am J Trop Med Hyg. 2018;99(2):338–349. 10.4269/ajtmh.17-1014
    1. Nieman AE, de Mast Q, Roestenberg M, et al. : Cardiac complication after experimental human malaria infection: a case report. Malar J. 2009;8:277. 10.1186/1475-2875-8-277
    1. van Meer MP, Bastiaens GJ, Boulaksil M, et al. : Idiopathic acute myocarditis during treatment for controlled human malaria infection: a case report. Malar J. 2014;13:38. 10.1186/1475-2875-13-38
    1. Hodgson SH, Juma E, Salim A, et al. : Lessons learnt from the first controlled human malaria infection study conducted in Nairobi, Kenya. Malar J. 2015;14:182. 10.1186/s12936-015-0671-x
    1. Achan J, Reuling I, Yap XZ, et al. : Serologic markers of previous malaria exposure and functional antibodies inhibiting parasite growth are associated with parasite kinetics following a Plasmodium falciparum controlled human infection. Clin Infect Dis. 2019; pii: ciz740. 10.1093/cid/ciz740
    1. Miller FG, Grady C: The ethical challenge of infection-inducing challenge experiments. Clin Infect Dis. 2001;33(7):1028–1033. 10.1086/322664
    1. Emanuel EJ, Wendler D, Grady C: What makes clinical research ethical? JAMA. 2000;283(20):2701–2711. 10.1001/jama.283.20.2701
    1. Njue M, Njuguna P, Kapulu MC, et al. : Ethical considerations in Controlled Human Malaria Infection studies in low resource settings: Experiences and perceptions of study participants in a malaria Challenge study in Kenya [version 1; referees: 2 approved]. Wellcome Open Res. 2018;3:39. 10.12688/wellcomeopenres.14439.1
    1. Kapulu MC, Njuguna P, Hamaluba M: Replication Data for: Controlled Human Malaria Infection in Semi-Immune Kenyan Adults (CHMI-SIKA): a study protocol to investigate in vivo Plasmodium falciparum malaria parasite growth in the context of pre-existing immunity. Harvard Dataverse, V1. 2018. 10.7910/DVN/XOXLJQ
    1. Mwangi TW, Ross A, Snow RW, et al. : Case definitions of clinical malaria under different transmission conditions in Kilifi District, Kenya. J Infect Dis. 2005;191(11):1932–1939. 10.1086/430006
    1. Mogeni P, Williams TN, Fegan G, et al. : Age, Spatial, and Temporal Variations in Hospital Admissions with Malaria in Kilifi County, Kenya: A 25-Year Longitudinal Observational Study. Grais RF, ed. PLoS Med. 2016;13(6):e1002047. 10.1371/journal.pmed.1002047
    1. Degefa T, Yewhalaw D, Zhou G, et al. : Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission. Malar J. 2017;16(1):443. 10.1186/s12936-017-2098-z
    1. Ndila CM, Uyoga S, Macharia AW, et al. : Human candidate gene polymorphisms and risk of severe malaria in children in Kilifi, Kenya: a case-control association study. Lancet Haematol. 2018;5(8):e333–e345. 10.1016/S2352-3026(18)30107-8
    1. Kamuyu G, Tuju J, Kimathi R, et al. : KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization. Front Immunol. 2018;9:2866. 10.3389/fimmu.2018.02866
    1. Duncan CJ, Hill AV, Ellis RD: Can growth inhibition assays (GIA) predict blood-stage malaria vaccine efficacy? Hum Vaccin Immunother. 2012;8(6):706–714. 10.4161/hv.19712
    1. Hodgson SH, Llewellyn D, Silk SE, et al. : Changes in Serological Immunology Measures in UK and Kenyan Adults Post-controlled Human Malaria Infection. Front Microbiol. 2016;7:1604. 10.3389/fmicb.2016.01604
    1. Murungi LM, Sondén K, Llewellyn D, et al. : Targets and Mechanisms Associated with Protection from Severe Plasmodium falciparum Malaria in Kenyan Children. Infect Immun. 2016;84(4):950–963. 10.1128/IAI.01120-15
    1. Osier FH, Feng G, Boyle MJ, et al. : Opsonic phagocytosis of Plasmodium falciparum merozoites: mechanism in human immunity and a correlate of protection against malaria. BMC Med. 2014;12(1):108. 10.1186/1741-7015-12-108
    1. Joos C, Marrama L, Polson HE, et al. : Clinical protection from falciparum malaria correlates with neutrophil respiratory bursts induced by merozoites opsonized with human serum antibodies. Beeson JG, ed. PLoS One. 2010;5(3):e9871. 10.1371/journal.pone.0009871
    1. Bejon P, Turner L, Lavstsen T, et al. : Serological evidence of discrete spatial clusters of Plasmodium falciparum parasites. PLoS One. 2011;6(6):e21711. 10.1371/journal.pone.0021711
    1. Reiling L, Boyle MJ, White MT, et al. : Targets of complement-fixing antibodies in protective immunity against malaria in children. Nat Commun. 2019;10(1):610. 10.1038/s41467-019-08528-z
    1. Rono MK, Nyonda MA, Simam JJ, et al. : Adaptation of Plasmodium falciparum to its transmission environment. Nat Ecol Evol. 2018;2(2):377–387. 10.1038/s41559-017-0419-9
    1. Kordasti S, Costantini B, Seidl T, et al. : Deep phenotyping of Tregs identifies an immune signature for idiopathic aplastic anemia and predicts response to treatment. Blood. 2016;128(9):1193–1205. 10.1182/blood-2016-03-703702
    1. Mason GM, Lowe K, Melchiotti R, et al. : Phenotypic Complexity of the Human Regulatory T Cell Compartment Revealed by Mass Cytometry. J Immunol. 2015;195(5):2030–2037. 10.4049/jimmunol.1500703
    1. Prendergast CT, Patakas A, Al-Khabouri S, et al. : Visualising the interaction of CD4 T cells and DCs in the evolution of inflammatory arthritis. Ann Rheum Dis. 2018;77(4):579–588. 10.1136/annrheumdis-2017-212279
    1. Scales HE, Meehan GR, Hayes AJ, et al. : A Novel Cellular Pathway of Antigen Presentation and CD4 T Cell Activation in vivo. Front Immunol. 2018;9:2684. 10.3389/fimmu.2018.02684
    1. Siddiqui G, Srivastava A, Russell AS, et al. : Multi-omics Based Identification of Specific Biochemical Changes Associated With PfKelch13-Mutant Artemisinin-Resistant Plasmodium falciparum. J Infect Dis. 2017;215(9):1435–1444. 10.1093/infdis/jix156
    1. Bediako Y, Adams R, Reid AJ, et al. : Repeated clinical malaria episodes are associated with modification of the immune system in children. BMC Med. 2019;17(1):60. 10.1186/s12916-019-1292-y
    1. Kublin JG, Mikolajczak SA, Sack BK, et al. : Complete attenuation of genetically engineered Plasmodium falciparum sporozoites in human subjects. Sci Transl Med. 2017;9(371): pii: eaad9099. 10.1126/scitranslmed.aad9099

Source: PubMed

3
Suscribir