Scrambler Therapy for Chronic Pain after Burns and Its Effect on the Cerebral Pain Network: A Prospective, Double-Blinded, Randomized Controlled Trial

Seung Yeol Lee, Chang-Hyun Park, Yoon Soo Cho, Laurie Kim, Ji Won Yoo, So Young Joo, Cheong Hoon Seo, Seung Yeol Lee, Chang-Hyun Park, Yoon Soo Cho, Laurie Kim, Ji Won Yoo, So Young Joo, Cheong Hoon Seo

Abstract

Chronic pain is common after burn injuries, and post-burn neuropathic pain is the most important complication that is difficult to treat. Scrambler therapy (ST) is a non-invasive modality that uses patient-specific electrocutaneous nerve stimulation and is an effective treatment for many chronic pain disorders. This study used magnetic resonance imaging (MRI) to evaluate the pain network-related mechanisms that underlie the clinical effect of ST in patients with chronic burn-related pain. This prospective, double-blinded, randomized controlled trial (ClinicalTrials.gov: NCT03865693) enrolled 43 patients who were experiencing chronic neuropathic pain after unilateral burn injuries. The patients had moderate or greater chronic pain (a visual analogue scale (VAS) score of ≥5), despite treatment using gabapentin and other physical modalities, and were randomized 1:1 to receive real or sham ST sessions. The ST was performed using the MC5-A Calmare device for ten 45 min sessions (Monday to Friday for 2 weeks). Baseline and post-treatment parameters were evaluated subjectively using the VAS score for pain and the Hamilton Depression Rating Scale; MRI was performed to identify objective central nervous system changes by measuring the cerebral blood volume (CBV). After 10 ST sessions (two weeks), the treatment group exhibited a significant reduction in pain relative to the sham group. Furthermore, relative to the pre-ST findings, the post-ST MRI evaluations revealed significantly decreased CBV in the orbito-frontal gyrus, middle frontal gyrus, superior frontal gyrus, and gyrus rectus. In addition, the CBV was increased in the precentral gyrus and postcentral gyrus of the hemisphere associated with the burned limb in the ST group, as compared with the CBV of the sham group. Thus, a clinical effect from ST on burn pain was observed after 2 weeks, and a potential mechanism for the treatment effect was identified. These findings suggest that ST may be an alternative strategy for managing chronic pain in burn patients.

Keywords: burn; cerebral pain network; chronic pain; scrambler therapy.

Conflict of interest statement

The authors declare that there are no potential conflict of interest.

Figures

Figure 1
Figure 1
Pain scrambler therapy on scar pain site in burn patients.
Figure 2
Figure 2
Mapping of CBV status after ST versus CBV status before ST as adjusted for sex and age. The brain regions marked in blue are regions with decreased activation after ST treatment in the ST group. A, anterior; P, posterior; L, left; R, right; I, Inferior; S, Superior.
Figure 3
Figure 3
Mapping of the CBV states in the experimental group versus the sham group. The brain regions (the precentral gyrus and postcentral gyrus) marked in red are regions with increased activation after treatment in the ST group compared to the Sham group. A, anterior; P, posterior; L, left; R, right.

References

    1. Dauber A., Osgood P.F., Breslau A.J., Vernon H.L., Carr D.B. Chronic persistent pain after severe burns: A survey of 358 burn survivors. Pain Med. 2002;3:6–17. doi: 10.1046/j.1526-4637.2002.02004.x.
    1. Klifto K.M., Dellon A.L., Hultman C.S. Prevalence and associated predictors for patients developing chronic neuropathic pain following burns. Burn. Trauma. 2020;8:tkaa011. doi: 10.1093/burnst/tkaa011.
    1. Hamed K., Giles N., Anderson J., Phillips J., Dawson L.F., Drummond P., Wallace H., Wood F.M., Rea S.M., Fear M. Changes in cutaneous innervation in patients with chronic pain after burns. Burns. 2011;37:631–637. doi: 10.1016/j.burns.2010.11.010.
    1. Klifto K.M., Yesantharao P.S., Dellon A.L., Hultman C.S., Lifchez S.D. Chronic neuropathic pain following hand burns: Etiology, treatment, and long-term outcomes. J. Hand Surg. 2021;46:67.e1–67.e9. doi: 10.1016/j.jhsa.2020.07.001.
    1. Pérez-Ruvalcaba I., Sánchez-Hernández V., Mercado-Sesma A.R. Effect of a combined continuous and intermittent transcutaneous electrical nerve stimulation on pain perception of burn patients evaluated by visual analog scale: A pilot study. Local Reg. Anesth. 2015;8:119–122.
    1. Udina-Cortés C., Fernández-Carnero J., Romano A.A., Cuenca-Zaldívar J.N., Villafañe J.H., Castro-Marrero J., Alguacil-Diego I.M. Effects of neuro-adaptive electrostimulation therapy on pain and disability in fibromyalgia: A prospective, randomized, double-blind study. Medicine. 2020;99:e23785. doi: 10.1097/MD.0000000000023785.
    1. Bridger C., Prabhala T., Dawson R., Khazen O., MacDonell J., DiMarzio M., Staudt M.D., De E.J.B., Argoff C., Pilitsis J.G. Neuromodulation for chronic pelvic pain: A single-institution experience with a collaborative team. Neurosurgery. 2020;88:819–827. doi: 10.1093/neuros/nyaa537.
    1. Pachman D.R., Weisbrod B.L., Seisler D.K., Barton D.L., Fee-Schroeder K.C., Smith T., Lachance D.H., Liu H., Shelerud R.A., Cheville A.L., et al. Pilot evaluation of scrambler therapy for the treatment of chemotherapy-induced peripheral neuropathy. Support Care Cancer. 2015;23:943–951. doi: 10.1007/s00520-014-2424-8.
    1. Yarchoan M., Naidoo J., Smith T.J. Successful treatment of scar pain with scrambler therapy. Cureus. 2019;11:e5903. doi: 10.7759/cureus.5903.
    1. Smith T., Cheville A.L., Loprinzi C.L., Longo-Schoberlein D. Scrambler therapy for the treatment of chronic post-mastectomy pain (cPMP) Cureus. 2017;9:e1378. doi: 10.7759/cureus.1378.
    1. Marineo G., Iorno V., Gandini C., Moschini V., Smith T.J. Scrambler therapy may relieve chronic neuropathic pain more effectively than guideline-based drug management: Results of a pilot, randomized, controlled trial. J. Pain Symptom Manag. 2012;43:87–95. doi: 10.1016/j.jpainsymman.2011.03.015.
    1. Reichling D.B., Levine J.D. Critical role of nociceptor plasticity in chronic pain. Trends Neurosci. 2009;32:611–618. doi: 10.1016/j.tins.2009.07.007.
    1. Ward R.S., Tuckett R.P., English K.B., Johansson O., Saffle J.R. Substance P axons and sensory threshold increase in burn-graft human skin. J. Surg. Res. 2004;118:154–160. doi: 10.1016/S0022-4804(03)00350-0.
    1. Leung L., Cahill C.M. TNF-alpha and neuropathic pain—A review. J. Neuroinflamm. 2010;7:27. doi: 10.1186/1742-2094-7-27.
    1. Mansour A.R., Farmer M.A., Baliki M.N., Apkarian A.V. Chronic pain: The role of learning and brain plasticity. Restor. Neurol. Neurosci. 2014;32:129–139. doi: 10.3233/RNN-139003.
    1. Apkarian V.A., Hashmi J.A., Baliki M.N. Pain and the brain: Specificity and plasticity of the brain in clinical chronic pain. Pain. 2011;152:S49–S64. doi: 10.1016/j.pain.2010.11.010.
    1. Kim W., Kim S.K., Nabekura J. Functional and structural plasticity in the primary somatosensory cortex associated with chronic pain. J. Neurochem. 2017;141:499–506. doi: 10.1111/jnc.14012.
    1. Joo S.Y., Park C.H., Cho Y.S., Seo C.H., Ohn S.H. Plastic Changes in pain and motor network induced by chronic burn pain. J. Clin. Med. 2021;10:2592. doi: 10.3390/jcm10122592.
    1. Seo C.H., Park C.-H., Jung M.H., Jang S., Joo S.Y., Kang Y., Ohn S.H. Preliminary investigation of pain-related changes in cerebral blood volume in patients with phantom limb pain. Arch. Phys. Med. Rehab. 2017;98:2206–2212. doi: 10.1016/j.apmr.2017.03.010.
    1. Tanwar S., Mattoo B., Kumar U., Bhatia R. Repetitive transcranial magnetic stimulation of the prefrontal cortex for fibromyalgia syndrome: A randomised controlled trial with 6-months follow up. Adv. Rheumatol. 2020;60:34. doi: 10.1186/s42358-020-00135-7.
    1. Park C.-H., Seo C.H., Jung M.H., Joo S.Y., Jang S., Lee H.Y., Ohn S.H. Investigation of cognitive circuits using steady-state cerebral blood volume and diffusion tensor imaging in patients with mild cognitive impairment following electrical injury. Neuroradiology. 2017;59:915–921. doi: 10.1007/s00234-017-1876-1.
    1. Dydyk A.M., Grandhe S. Pain Assessment. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2022.
    1. Jensen M.P., Chen C., Brugger A.M. Interpretation of visual analog scale ratings and change scores: A reanalysis of two clinical trials of postoperative pain. J. Pain. 2003;4:407–414. doi: 10.1016/S1526-5900(03)00716-8.
    1. Kim H.W., Shin C., Lee S.H., Han C. Standardization of the Korean version of the patient health questionnaire-4 (PHQ-4) Clin. Psychopharmacol. Neurosci. 2021;19:104–111. doi: 10.9758/cpn.2021.19.1.104.
    1. Zhang Z., Tao W., Hou Y.Y., Wang W., Lu Y.G., Pan Z.Z. Persistent pain facilitates response to morphine reward by downregulation of central amygdala GABAergic function. Neuropsychopharmacology. 2014;39:2263–2271. doi: 10.1038/npp.2014.77.
    1. Nayback-Beebe A., Panula T., Arzola S., Goff B. Scrambler therapy treatment: The importance of examining clinically meaningful improvements in chronic pain and quality of life. Mil. Med. 2020;185:143–147. doi: 10.1093/milmed/usz253.
    1. Starkweather A.R., Coyne P., Lyon D.E., Elswick R.K., Jr., An K., Sturgill J. Decreased low back pain intensity and differential gene expression following Calmare®: Results from a double-blinded randomized sham-controlled study. Res. Nurs. Health. 2015;38:29–38. doi: 10.1002/nur.21632.
    1. Thibaut A., Ohrtman E.A., Morales-Quezada L., Simko L.C., Ryan C.M., Zafonte R., Schneider J.C., Fregni F. Distinct behavioral response of primary motor cortex stimulation in itch and pain after burn injury. Neurosci. Lett. 2019;690:89–94. doi: 10.1016/j.neulet.2018.10.013.
    1. Alencar de Castro R.J., Leal P.C., Sakata R.K. Pain management in burn patients. Braz. J. Anesthesiol. 2013;63:149–153. doi: 10.1016/S0034-7094(13)70206-X.
    1. Seo C.H., Park C.-H., Jung M.H., Baek S., Song J., Cha E., Ohn A.S.H. Increased white matter diffusivity associated with phantom limb pain. Korean J. Pain. 2019;32:271–279. doi: 10.3344/kjp.2019.32.4.271.
    1. Winkler A.M., Ridgway G.R., Webster M.A., Smith S.M., Nichols T.E. Permutation inference for the general linear model. NeuroImage. 2014;92:381–397. doi: 10.1016/j.neuroimage.2014.01.060.
    1. Smith S.M., Nichols T.E. Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage. 2009;44:83–98. doi: 10.1016/j.neuroimage.2008.03.061.
    1. Alonso-Matielo H., Gonçalves E.S., Campos M., Oliveira V.R., Toniolo E.F., Alves A.S., Lebrun I., de Andrade D.C., Teixeira M.J., Britto L.R., et al. Electrical stimulation of the posterior insula induces mechanical analgesia in a rodent model of neuropathic pain by modulating GABAergic signaling and activity in the pain circuitry. Brain Res. 2021;1754:147237. doi: 10.1016/j.brainres.2020.147237.
    1. Kalous A., Osborne P.B., Keast J.R. Spinal cord compression injury in adult rats initiates changes in dorsal horn remodeling that may correlate with development of neuropathic pain. J. Comp. Neurol. 2009;513:668–684. doi: 10.1002/cne.21986.
    1. Latremoliere A., Woolf C.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain. 2009;10:895–926. doi: 10.1016/j.jpain.2009.06.012.
    1. Tomasello C., Pinto R.M., Mennini C., Conicella E., Stoppa F., Raucci U. Scrambler therapy efficacy and safety for neuropathic pain correlated with chemotherapy-induced peripheral neuropathy in adolescents: A preliminary study. Pediatr. Blood Cancer. 2018;65:e27064. doi: 10.1002/pbc.27064.
    1. Portilla A.S., Bravo G.L., Miraval F.K., Villamar M.F., Schneider J.C., Ryan C.M., Fregni F. A feasibility study assessing cortical plasticity in chronic neuropathic pain following burn injury. J. Burn Care Res. 2013;34:e48–e52. doi: 10.1097/BCR.0b013e3182700675.
    1. Kang B., Ma J., Shen J., Xu H., Wang H., Zhao C., Xie J., Zhong S., Gao C., Xu X., et al. Altered brain activity in end-stage knee osteoarthritis revealed by resting-state functional magnetic resonance imaging. Brain Behav. 2022;12:e2479. doi: 10.1002/brb3.2479.
    1. Barroso J., Vigotsky A.D., Branco P., Reis A.M., Schnitzer T.J., Galhardo V., Apkarian A.V. Brain gray matter abnormalities in osteoarthritis pain: A cross-sectional evaluation. Pain. 2020;161:2167–2178. doi: 10.1097/j.pain.0000000000001904.
    1. Lewis G.N., Parker R.S., Sharma S., Rice D.A., McNair P.J. Structural brain alterations before and after total knee arthroplasty: A longitudinal assessment. Pain Med. 2018;19:2166–2176. doi: 10.1093/pm/pny108.
    1. Hosseini Amiri M., Tavousi S.H., Mazlom S.R., Manzari Z.S. Effect of transcranial direct current stimulation on pain anxiety during burn wound care. Burns. 2016;42:872–876. doi: 10.1016/j.burns.2016.01.006.
    1. Thibaut A., Shie V.L., Ryan C.M., Zafonte R., Ohrtman E.A., Schneider J.C., Fregni F. A review of burn symptoms and potential novel neural targets for non-invasive brain stimulation for treatment of burn sequelae. Burns. 2020;47:525–537. doi: 10.1016/j.burns.2020.06.005.

Source: PubMed

3
Suscribir