High Proportion of Potential Candidates for Immunotherapy in a Chilean Cohort of Gastric Cancer Patients: Results of the FORCE1 Study

Miguel Cordova-Delgado, Mauricio P Pinto, Ignacio N Retamal, Matías Muñoz-Medel, María Loreto Bravo, María F Fernández, Betzabé Cisternas, Sebastián Mondaca, César Sanchez, Hector Galindo, Bruno Nervi, Carolina Ibáñez, Francisco Acevedo, Jorge Madrid, José Peña, Erica Koch, Maria José Maturana, Diego Romero, Nathaly de la Jara, Javiera Torres, Manuel Espinoza, Carlos Balmaceda, Yuwei Liao, Zhiguang Li, Matías Freire, Valentina Gárate-Calderón, Javier Cáceres, Gonzalo Sepúlveda-Hermosilla, Rodrigo Lizana, Liliana Ramos, Rocío Artigas, Enrique Norero, Fernando Crovari, Ricardo Armisén, Alejandro H Corvalán, Gareth I Owen, Marcelo Garrido, Miguel Cordova-Delgado, Mauricio P Pinto, Ignacio N Retamal, Matías Muñoz-Medel, María Loreto Bravo, María F Fernández, Betzabé Cisternas, Sebastián Mondaca, César Sanchez, Hector Galindo, Bruno Nervi, Carolina Ibáñez, Francisco Acevedo, Jorge Madrid, José Peña, Erica Koch, Maria José Maturana, Diego Romero, Nathaly de la Jara, Javiera Torres, Manuel Espinoza, Carlos Balmaceda, Yuwei Liao, Zhiguang Li, Matías Freire, Valentina Gárate-Calderón, Javier Cáceres, Gonzalo Sepúlveda-Hermosilla, Rodrigo Lizana, Liliana Ramos, Rocío Artigas, Enrique Norero, Fernando Crovari, Ricardo Armisén, Alejandro H Corvalán, Gareth I Owen, Marcelo Garrido

Abstract

Gastric cancer (GC) is a heterogeneous disease. This heterogeneity applies not only to morphological and phenotypic features but also to geographical variations in incidence and mortality rates. As Chile has one of the highest mortality rates within South America, we sought to define a molecular profile of Chilean GCs (ClinicalTrials.gov identifier: NCT03158571/(FORCE1)). Solid tumor samples and clinical data were obtained from 224 patients, with subsets analyzed by tissue microarray (TMA; n = 90) and next generation sequencing (NGS; n = 101). Most demographic and clinical data were in line with previous reports. TMA data indicated that 60% of patients displayed potentially actionable alterations. Furthermore, 20.5% were categorized as having a high tumor mutational burden, and 13% possessed micro-satellite instability (MSI). Results also confirmed previous studies reporting high Epstein-Barr virus (EBV) positivity (13%) in Chilean-derived GC samples suggesting a high proportion of patients could benefit from immunotherapy. As expected, TP53 and PIK3CA were the most frequently altered genes. However, NGS demonstrated the presence of TP53, NRAS, and BRAF variants previously unreported in current GC databases. Finally, using the Kendall method, we report a significant correlation between EBV+ status and programmed death ligand-1 (PDL1)+ and an inverse correlation between p53 mutational status and MSI. Our results suggest that in this Chilean cohort, a high proportion of patients are potential candidates for immunotherapy treatment. To the best of our knowledge, this study is the first in South America to assess the prevalence of actionable targets and to examine a molecular profile of GC patients.

Keywords: cancer subtypes; gastric adenocarcinoma; gastric cancer; molecular; prognosis; survival.

Conflict of interest statement

CEMP is affiliated to Pfizer Chile. The authors declare no other conflict of interest.

Figures

Figure 1
Figure 1
Overall survival rates in the FORCE1 cohort. Kaplan–Meier curves indicate overall survival for (A) the entire cohort, (B) by gender, (C) by cancer stage, (D) by histological type.
Figure 2
Figure 2
Profiling of 48 Chilean gastric cancers by next generation sequencing (NGS), clinical, and pathological characteristics. The waterfall plot shows the number of gene alterations per patient (upper section), number of alterations per gene (right). Colored squares indicate the alteration type (SNV, CNV, or fusion drivers/see key). Clinical (age, gender, Lauren classification, signet ring, tumor location), and pathological (PDL1, MSI, HER2, p16, p53, EBV) characteristics for each patient are shown in the lower section.
Figure 3
Figure 3
Kendall correlations between tissue microarray (TMA) and clinical data (a) or between NGS and clinical data (b). Significant correlations (p < 0.05) are indicated by colored squares; positive correlations are in red and negative in blue.

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492.
    1. Ruíz-García E., Guadarrama-Orozco J., Vidal-Millán S., Lino-Silva L.S., López-Camarillo C., Astudillo-de la Vega H. Gastric cancer in Latin America. Scand. J. Gastroenterol. 2018;53:124–129. doi: 10.1080/00365521.2017.1417473.
    1. Jimenez De La Jara J., Bastias G., Ferreccio C., Moscoso C., Sagues S., Cid C., Bronstein E., Herrera C., Nervi B., Corvalan A., et al. A snapshot of cancer in Chile: Analytical frameworks for developing a cancer policy. Biol. Res. 2015;48:1–15. doi: 10.1186/0717-6287-48-10.
    1. Bosman F.T., Carneiro F., Hruban R.H., Theise N.D., editors. WHO Classification of Tumours of the Digestive System. 4th ed. WHO; Lyon, France: 2010.
    1. Tan I.B., Ivanova T., Lim K.H., Ong C.W., Deng N., Lee J., Tan S.H., Wu J., Lee M.H., Ooi C.H., et al. Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy. Gastroenterology. 2011;141:476–485.e11. doi: 10.1053/j.gastro.2011.04.042.
    1. The Cancer Genome Atlas Research Network Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–209. doi: 10.1038/nature13480.
    1. Cristescu R., Lee J., Nebozhyn M., Kim K.M., Ting J.C., Wong S.S., Liu J., Yue Y.G., Wang J., Yu K., et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nature. 2015;21:449–456. doi: 10.1038/nm.3850.
    1. Caglevic C., Silva S., Mahave M., Rolfo C., Gallardo J. The current situation for gastric cancer in Chile. Ecancermedicalscience. 2016;10:8–15. doi: 10.3332/ecancer.2016.707.
    1. Corvalan A., Koriyama C., Akiba S., Eizuru Y., Backhouse C., Palma M., Argandoña J., Tokunaga M. Epstein-Barr virus in gastric carcinoma is associated with location in the cardia and with a diffuse histology: A study in one area of Chile. Int. J. Cancer. 2001;94:527–530. doi: 10.1002/ijc.1510.
    1. Corvalán A., Ruedlinger J., de Mayo T., Polakovicova I., Gonzalez-Hormazabal P., Aguayo F. The Phylogeographic Diversity of EBV and Admixed Ancestry in the Americas–Another Model of Disrupted Human-Pathogen Co-Evolution. Cancers. 2019;11:217. doi: 10.3390/cancers11020217.
    1. Ferreccio C., Rollán A., Harris P.R., Serrano C., Gederlini A., Margozzini P., Gonzalez C., Aguilera X., Venegas A., Jara A. Gastric cancer is related to early Helicobacter pylori infection in a high-prevalence country. Cancer Epidemiol. Biomarkers Prev. 2007;16:662–667. doi: 10.1158/1055-9965.EPI-06-0514.
    1. Carrasco-Avino G., Riquelme I., Padilla O., Villaseca M., Aguayo F.R., Corvalan A.H. The Conundrum of the Epstein-Barr virus-associated gastric carcinoma in the Americas. Oncotarget. 2017;8:75687–75698. doi: 10.18632/oncotarget.18497.
    1. Owen G.I., Pinto M.P., Retamal I.N., Fernádez M.F., Cisternas B., Mondaca S., Sanchez C., Galindo H., Nervi B., Ibañez C., et al. Chilean Gastric Cancer Task Force: A study protocol to obtain a clinical and molecular classification of a cohort of gastric cancer patients. Medicine (Baltimore) 2018;97:e0419. doi: 10.1097/MD.0000000000010419.
    1. Wang K., Yuen S.T., Xu J., Lee S.P., Yan H.H.N., Shi S.T., Siu H.C., Deng S., Chu K.M., Law S., et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 2014;46:573–582. doi: 10.1038/ng.2983.
    1. Kakiuchi M., Nishizawa T., Ueda H., Gotoh K., Tanaka A., Hayashi A., Yamamoto S., Tatsuno K., Katoh H., Watanabe Y., et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat. Genet. 2014;46:583–587. doi: 10.1038/ng.2984.
    1. Gao J., Aksoy B.A., Dogrusoz U., Dresdner G., Gross B., Sumer S.O., Sun Y., Jacobsen A., Sinha R., Larsson E., et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013;6:pl1. doi: 10.1126/scisignal.2004088.
    1. Okada E., Ukawa S., Nakamura K., Hirata M., Nagai A., Matsuda K., Ninomiya T., Kiyohara Y., Muto K., Kamatani Y., et al. Demographic and lifestyle factors and survival among patients with esophageal and gastric cancer: The Biobank Japan Project. J. Epidemiol. 2017;27:S29–S35. doi: 10.1016/j.je.2016.12.002.
    1. Zong L., Abe M., Seto Y., Ji J. The challenge of screening for early gastric cancer in China. Lancet. 2016;388:2606. doi: 10.1016/S0140-6736(16)32226-7.
    1. Zhao G.-H., Li T.-C., Shi L.-H., Xia Y.-B., Lu L.-M., Huang W.-B., Sun H.-L., Zhang Y.-S. Relationship between inactivation of p16 gene and gastric carcinoma. World J. Gastroenterol. 2003;9:905–909. doi: 10.3748/wjg.v9.i5.905.
    1. Giampieri R., Maccaroni E., Mandolesi A., Del Prete M., Andrikou K., Faloppi L., Bittoni A., Bianconi M., Scarpelli M., Bracci R., et al. Mismatch repair deficiency may affect clinical outcome through immune response activation in metastatic gastric cancer patients receiving first-line chemotherapy. Gastric Cancer. 2017;20:156–163. doi: 10.1007/s10120-016-0594-4.
    1. Shah M.A., Khanin R., Tang L., Janjigian Y.Y., Klimstra D.S., Gerdes H., Kelsen D.P. Molecular classification of gastric cancer: A new paradigm. Clin. Cancer Res. 2011;17:2693–2701. doi: 10.1158/1078-0432.CCR-10-2203.
    1. Ichikawa H., Nagahashi M., Shimada Y., Hanyu T., Ishikawa T., Kameyama H., Kobayashi T., Sakata J., Yabusaki H., Nakagawa S., et al. Actionable gene-based classification toward precision medicine in gastric cancer. Genome Med. 2017;9:93. doi: 10.1186/s13073-017-0484-3.
    1. Goodman A.M., Kato S., Bazhenova L., Patel S.P., Frampton G.M., Miller V., Stephens P.J., Daniels G.A., Kurzrock R. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol. Cancer Ther. 2017;16:2598–2608. doi: 10.1158/1535-7163.MCT-17-0386.
    1. Sher X., Park S.H., Kang W.K., Jung H., Lee M., Loboda A., Kim S.T., Lee J., Kang P.S., Lee S., et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med. 2018;24:1449–1458.
    1. Mishima S., Kuwata T., Yoshino T., Doi T., Kawazoe A., Tsuji A., Nakamura Y., Kojima T., Shitara K., Ohtsu A., et al. Clinicopathological and molecular features of responders to nivolumab for patients with advanced gastric cancer. J. Immunother. Cancer. 2019;7:24. doi: 10.1186/s40425-019-0514-3.
    1. Nagashima T., Urakami K., Mochizuki T., Serizawa M., Shimoda Y., Yamaguchi K., Kusuhara M., Naruoka A., Akiyama Y., Ohnami S., et al. Tumor mutational burden analysis of 2,000 Japanese cancer genomes using whole exome and targeted gene panel sequencing. Biomed. Res. 2018;39:159–167.
    1. Samstein R.M., Lee C.H., Shoushtari A.N., Hellmann M.D., Shen R., Janjigian Y.Y., Barron D.A., Zehir A., Jordan E.J., Omuro A., et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019;51:202–206. doi: 10.1038/s41588-018-0312-8.
    1. Zhuang W., Ma J., Chen X., Wang G., Lu J., Chen Y., Dong H., Cai S., Zhang Y., Zhao X., et al. The tumor mutational Burden of Chinese advanced cancer patients estimated by a 381-cancer-gene Panel. J. Cancer. 2018;9:2302–2307. doi: 10.7150/jca.24932.
    1. Tahara T., Shibata T., Okamoto Y., Yamazaki J., Kawamura T., Horiguchi N., Okubo M., Nakano N., Ishizuka T., Nagasaka M., et al. Mutation spectrum of TP53 gene predicts clinicopathological features and survival of gastric cancer. Oncotarget. 2016;7:42252–42260. doi: 10.18632/oncotarget.9770.
    1. Fenoglio-Preiser C.M., Wang J., Stemmermann G.N., Noffsinger A. TP53 and gastric carcinoma: A review. Hum. Mutat. 2003;21:258–270. doi: 10.1002/humu.10180.
    1. Cho J., Kang M.S., Kim K.M. Epstein-Barr virus-associated gastric carcinoma and specific features of the accompanying immune response. J. Gastric Cancer. 2016;16:1–7. doi: 10.5230/jgc.2016.16.1.1.
    1. Constanza Camargo M., Kim W.H., Chiaravalli A.M., Kim K.M., Corvalan A.H., Matsuo K., Yu J., Sung J.J.Y., Herrera-Goepfert R., Meneses-Gonzalez F., et al. Improved survival of gastric cancer with tumour Epstein-Barr virus positivity: An international pooled analysis. Gut. 2014;63:236–243. doi: 10.1136/gutjnl-2013-304531.
    1. Liu X., Liu J., Qiu H., Kong P., Chen S., Li W., Zhan Y., Li Y., Chen Y., Zhou Z., et al. Prognostic significance of Epstein-Barr virus infection in gastric cancer: A meta-analysis. BMC Cancer. 2015;15:782. doi: 10.1186/s12885-015-1813-9.
    1. Seo A.N., Kang B.W., Kwon O.K., Park K.B., Lee S.S., Chung H.Y., Yu W., Bae H.I., Jeon S.W., Kang H., et al. Intratumoural PD-l1 expression is associated with worse survival of patients with epstein– barr virus-associated gastric cancer. Br. J. Cancer. 2017;117:1753–1760. doi: 10.1038/bjc.2017.369.
    1. Patel S.P., Kurzrock R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol. Cancer Ther. 2015;14:847–856. doi: 10.1158/1535-7163.MCT-14-0983.
    1. Kankeu Fonkoua L., Yee N. Molecular Characterization of Gastric Carcinoma: Therapeutic Implications for Biomarkers and Targets. Biomedicines. 2018;6:32. doi: 10.3390/biomedicines6010032.
    1. Li C., Kim S., Lai J.F., Hyung W.J., Choi W.H., Choi S.H., Noh S.H. Advanced gastric carcinoma with signet ring cell histology. Oncology. 2007;72:64–68. doi: 10.1159/000111096.
    1. Whitehall V.L.J., Buttenshaw R.L., Bond C.E., Montgomery G.W., Ramsnes I., Greco S.A., Zhen Zhao Z., Leggett B.A., Umapathy A., Mallitt K.-A. p53 mutation is common in microsatellite stable, BRAF mutant colorectal cancers. Int. J. Cancer. 2011;130:1567–1576.
    1. Ascierto P.A., Kirkwood J.M., Grob J.J., Simeone E., Grimaldi A.M., Maio M., Palmieri G., Testori A., Marincola F.M., Mozzillo N. The role of BRAF V600 mutation in melanoma. J. Transl. Med. 2012;10:85. doi: 10.1186/1479-5876-10-85.
    1. Chau I., Baselga J., Tabernero J., Elez-Fernandez M.E., Sirzen F., Wolf J., Hidalgo M., Gervais R., Blay J.-Y., Hollebecque A., et al. Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N. Engl. J. Med. 2015;373:726–736.
    1. Zhang C., Spevak W., Zhang Y., Burton E.A., Ma Y., Habets G., Zhang J., Lin J., Ewing T., Matusow B., et al. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature. 2015;526:583–586. doi: 10.1038/nature14982.
    1. Tutuka C.S.A., Andrews M.C., Mariadason J.M., Ioannidis P., Hudson C., Cebon J., Behren A. PLX8394, a new generation BRAF inhibitor, selectively inhibits BRAF in colonic adenocarcinoma cells and prevents paradoxical MAPK pathway activation. Mol. Cancer. 2017;16:112. doi: 10.1186/s12943-017-0684-x.
    1. Chiurillo M.A. Role of the Wnt/β-catenin pathway in gastric cancer: An in-depth literature review. World J. Exp. Med. 2015;5:84. doi: 10.5493/wjem.v5.i2.84.
    1. Khalil S., Tan G.A., Giri D.D., Zhou X.K., Howe L.R. Activation status of Wnt/ß-catenin signaling in normal and neoplastic breast tissues: Relationship to HER2/neu expression in human and mouse. PLoS ONE. 2012;7:e33421. doi: 10.1371/journal.pone.0033421.
    1. Carrasco G., Diaz J., Valbuena J.R., Ibanez P., Rodriguez P., Araya G., Rodriguez C., Torres J., Duarte I., Aravena E., et al. Overexpression of p73 as a Tissue Marker for High-Risk Gastritis. Clin. Cancer Res. 2010;16:3253–3259. doi: 10.1158/1078-0432.CCR-09-2491.
    1. Bernal C., Vargas M., Ossandón F., Santibáñez E., Urrutia J., Luengo V., Zavala L.F., Backhouse C., Palma M., Argandoña J., et al. DNA methylation profile in diffuse type gastric cancer: Evidence for hypermethylation of the BRCA1 promoter region in early-onset gastric carcinogenesis. Biol. Res. 2008;41:303–315. doi: 10.4067/S0716-97602008000300007.
    1. Kulangara K., Hanks D.A., Waldroup S., Peltz L., Shah S., Roach C., Juco J.W., Emancipator K., Stanforth D. Development of the combined positive score (CPS) for the evaluation of PD-L1 in solid tumors with the immunohistochemistry assay PD-L1 IHC 22C3 pharmDx. J. Clin. Oncol. 2017;35:e14589. doi: 10.1200/JCO.2017.35.15_suppl.e14589.
    1. Rüschoff J., Hanna W., Bilous M., Hofmann M., Osamura R.Y., Penault-Llorca F., Van De Vijver M., Viale G. HER2 testing in gastric cancer: A practical approach. Mod. Pathol. 2012;25:637–650. doi: 10.1038/modpathol.2011.198.
    1. Bailey M.H., Tokheim C., Porta-Pardo E., Sengupta S., Bertrand D., Weerasinghe A., Colaprico A., Wendl M.C., Kim J., Reardon B., et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell. 2018;174:1034–1035. doi: 10.1016/j.cell.2018.07.034.
    1. Voss M.H., Snyder A., Zhang H., Hantash F.M., Berger M.F., Riely G.J., Chi P., Callahan M.K., Sabbatini P., Lowery M., et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis. Oncol. 2017;1:1–16.

Source: PubMed

3
Suscribir