Water exchange colonoscopy decreased adenoma miss rates compared with literature data and local data with CO2 insufflation: an observational study

Chi-Liang Cheng, Yen-Lin Kuo, Yu-Hsi Hsieh, Jui-Hsiang Tang, Felix W Leung, Chi-Liang Cheng, Yen-Lin Kuo, Yu-Hsi Hsieh, Jui-Hsiang Tang, Felix W Leung

Abstract

Background: Reports showed adenoma miss rates (AMRs) of 22.5-27% in the right colon and 23.4-33.3% in the proximal colon. Missed lesions could contribute to postcolonoscopy cancers. Water exchange (WE) with near-complete removal of infused water during insertion increased adenoma detection rate but the impact on AMR had not been reported. We hypothesized that WE could reduce AMRs. Study 1 compared the AMRs of WE with literature data. Study 2 developed local AMR data with CO2 insufflation.

Methods: The lead author attended a research seminar in 2017 on WE colonoscopy. For performance improvement, study 1 was undertaken. When data in study 1 confirmed WE produced a considerably lower AMRs in the right and proximal colon, study 2 with CO2 insufflation was performed.

Results: Eighty-six patients completed each study. In study 1, WE removed 89% of infused water upon arrival to the cecum. The AMRs of right colon (17.5%) and proximal colon (15.5%) were considerably lower than those in the literature. Upon completion of study 2, compared with local data of CO2 insufflation, WE showed a significantly lower AMR in the right (17.5% vs. 33.8%, P = 0.034) and proximal (15.5% vs. 30.4%, P = 0.018) colon, respectively. The major limitation was that the investigation consisted of two consecutive observational studies, not a randomized controlled trial (RCT).

Conclusions: WE with near-complete (89%) removal of infused water during insertion significantly decreased AMRs in the right and proximal colon compared with literature data and those of CO2 insufflation in our hands. The provocative data warrant confirmation in a RCT.

Trial registration: NCT03832322 (Retrospectively registered on February 2, 2019).

Keywords: Adenoma miss rate; Carbon dioxide; Colon polyp; Colonoscopy; Water exchange.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow chart of study 1 (the WE group). Abbreviation: ASA American Society of Anesthesiology, WE water exchange.
Fig. 2
Fig. 2
Flow chart of study 2 (the CO2 group)

References

    1. Dekker E, Rex DK. Advances in CRC prevention: screening and surveillance. Gastroenterology. 2018;154:1970–1984. doi: 10.1053/j.gastro.2018.01.069.
    1. Rex DK, Cutler CS, Lemmel GT, et al. Colonoscopic miss rates of adenomas determined by back-to-back colonoscopies. Gastroenterology. 1997;112:24–28. doi: 10.1016/S0016-5085(97)70214-2.
    1. Harrison M, Singh N, Rex DK. Impact of proximal colon retroflexion on adenoma miss rates. Am J Gastroenterol. 2004;99:519–522. doi: 10.1111/j.1572-0241.2004.04070.x.
    1. Heresbach D, Barrioz T, Lapalus MG, et al. Miss rate for colorectal neoplastic polyps: a prospective multicenter study of back-to-back video colonoscopies. Endoscopy. 2008;40:284–290. doi: 10.1055/s-2007-995618.
    1. Leufkens AM, van Oijen MG, Vleggaar FP, et al. Factors influencing the miss rate of polyps in a back-to-back colonoscopy study. Endoscopy. 2012;44:470–475. doi: 10.1055/s-0031-1291666.
    1. Zhao S, Wang S, Pan P, et al. Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis. Gastroenterology. 2019;156:1661–1674. doi: 10.1053/j.gastro.2019.01.260.
    1. le Clercq CM, Bouwens MW, Rondagh EJ, et al. Postcolonoscopy colorectal cancers are preventable: a population-based study. Gut. 2014;63:957–963. doi: 10.1136/gutjnl-2013-304880.
    1. Singh S, Singh PP, Murad MH, et al. Prevalence, risk factors, and outcomes of interval colorectal cancers: a systematic review and meta-analysis. Am J Gastroenterol. 2014;109:1375–1389. doi: 10.1038/ajg.2014.171.
    1. Kaminski MF, Regula J, Kraszewska E, et al. Quality indicators for colonoscopy and the risk of interval cancer. N Engl J Med. 2010;362:1795–1803. doi: 10.1056/NEJMoa0907667.
    1. Corley DA, Jensen CD, Marks AR, et al. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med. 2014;370:1298–1306. doi: 10.1056/NEJMoa1309086.
    1. Gupta S, Balasubramanian BA, Fu T, et al. Polyps with advanced neoplasia are smaller in the right than in the left colon: implications for colorectal cancer screening. Clin Gastroenterol Hepatol. 2012;10:1395–1401. doi: 10.1016/j.cgh.2012.07.004.
    1. Laiyemo AO, Doubeni C, Sanderson AK, 2nd, et al. Likelihood of missed and recurrent adenomas in the proximal versus the distal colon. Gastrointest Endosc. 2011;74:253–261. doi: 10.1016/j.gie.2011.02.023.
    1. Leung FW, Harker JO, Jackson G, et al. A proof-of-principle, prospective, randomized, controlled trial demonstrating improved outcomes in scheduled unsedated colonoscopy by the water method. Gastrointest Endosc. 2010;72:693–700. doi: 10.1016/j.gie.2010.05.020.
    1. Hsieh YH, Koo M, Leung FW. A patient-blinded randomized, controlled trial comparing air insufflation, water immersion, and water exchange during minimally sedated colonoscopy. Am J Gastroenterol. 2014;109:1390–1400. doi: 10.1038/ajg.2014.126.
    1. Jia H, Pan Y, Guo X, et al. Water exchange method significantly improves adenoma detection rate: a multicenter, randomized controlled trial. Am J Gastroenterol. 2017;112:568–576. doi: 10.1038/ajg.2016.501.
    1. Cadoni S, Falt P, Rondonotti E, et al. Water exchange for screening colonoscopy increases adenoma detection rate: a multicenter, double-blinded, randomized controlled trial. Endoscopy. 2017;49:456–467. doi: 10.1055/s-0043-101229.
    1. Hsieh YH, Tseng CW, Hu CT, et al. Prospective multicenter randomized controlled trial comparing adenoma detection rate in colonoscopy using water exchange, water immersion, and air insufflation. Gastrointest Endosc. 2017;86:192–201. doi: 10.1016/j.gie.2016.12.005.
    1. Fuccio L, Frazzoni L, Hassan C, et al. Water exchange colonoscopy increases adenoma detection rate: a systematic review with network meta-analysis of randomized controlled studies. Gastrointest Endosc. 2018;88:589–597. doi: 10.1016/j.gie.2018.06.028.
    1. Lai EJ, Calderwood AH, Doros G, et al. The Boston bowel preparation scale: a valid and reliable instrument for colonoscopy-oriented research. Gastrointest Endosc. 2009;69:620–625. doi: 10.1016/j.gie.2008.05.057.
    1. Lieberman DA, Rex DK, Winawer SJ, et al. Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the US multi-society task force on colorectal Cancer. Gastroenterology. 2012;143:844–857. doi: 10.1053/j.gastro.2012.06.001.
    1. Hsieh YH, Koo M, Tseng CW, et al. Reduction of multitasking distractions underlies the higher adenoma detection rate of water exchange compared to air insufflation – blinded analysis of withdrawal phase videos. United European Gastroenterol J. 2019;7:230–238. doi: 10.1177/2050640618817105.
    1. Anderson JC, Kahi CJ, Sullivan A, et al. Comparing adenoma and polyp miss rates for total underwater colonoscopy versus standard CO2: a randomized controlled trial using a tandem colonoscopy approach. Gastrointest Endosc. 2019;89:591–598. doi: 10.1016/j.gie.2018.09.046.

Source: PubMed

3
Suscribir