Longitudinal enumeration and cluster evaluation of circulating tumor cells improve prognostication for patients with newly diagnosed metastatic breast cancer in a prospective observational trial

Anna-Maria Larsson, Sara Jansson, Pär-Ola Bendahl, Charlotte Levin Tykjaer Jörgensen, Niklas Loman, Cecilia Graffman, Lotta Lundgren, Kristina Aaltonen, Lisa Rydén, Anna-Maria Larsson, Sara Jansson, Pär-Ola Bendahl, Charlotte Levin Tykjaer Jörgensen, Niklas Loman, Cecilia Graffman, Lotta Lundgren, Kristina Aaltonen, Lisa Rydén

Abstract

Background: Circulating tumor cells (CTCs) carry independent prognostic information in patients with metastatic breast cancer (MBC) on different lines of therapy. Moreover, CTC clusters are suggested to add prognostic information to CTC enumeration alone but their significance is unknown in patients with newly diagnosed MBC. We aimed to evaluate whether longitudinal enumeration of circulating tumor cells (CTCs) and CTC clusters could improve prognostication and monitoring of patients with metastatic breast cancer (MBC) starting first-line therapy.

Methods: This prospective study included 156 women with newly diagnosed MBC. CTCs and CTC clusters were detected using CellSearch technology at baseline (BL) and after 1, 3, and 6 months of systemic therapy. The primary end point was progression-free survival (PFS) and the secondary end point overall survival (OS). Median follow-up time was 25 (7-69) months.

Results: There were 79 (52%) and 30 (20%) patients with ≥ 5 CTCs and ≥ 1 CTC cluster at baseline, respectively; both factors were significantly associated with impaired survival. Landmark analyses based on follow-up measurements revealed increasing prognostic hazard ratios for ≥ 5 CTCs and CTC clusters during treatment, predicting worse PFS and OS. Both factors added value to a prognostic model based on clinicopathological variables at all time points and ≥ 5 CTCs and presence of CTC clusters enhanced the model's C-index to > 0.80 at 1, 3, and 6 months. Importantly, changes in CTCs during treatment were significantly correlated with survival and patients with a decline from ≥ 5 CTCs at BL to < 5 CTCs at 1 month had a similar odds ratio for progression to patients with < 5 CTCs at BL and 1 month. Stratification of patients based on CTC count and CTC clusters into four groups (0 CTCs, 1-4 CTCs, ≥ 5 CTCs, and ≥ 1 CTC + CTC clusters) demonstrated that patients with CTC clusters had significantly worse survival compared to patients without clusters.

Conclusions: Longitudinal evaluation of CTC and CTC clusters improves prognostication and monitoring in patients with MBC starting first-line systemic therapy. The prognostic value increases over time, suggesting that changes in CTC count are clinically relevant. The presence of CTC clusters adds significant prognostic value to CTC enumeration alone.

Trial registration: NCT01322893 . Registered on 25 March 2011.

Keywords: Circulating tumor cells (CTCs); Cluster; Enumeration; Metastatic breast cancer; Prognosis.

Conflict of interest statement

Ethics approval

The study was approved by the Ethics Committee at Lund University, Lund, Sweden (LU 2010/135).

Consent for publication

All included patients provided written informed consent for publication.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flowchart of study cohort and time points for circulating tumor cell (CTC) analysis
Fig. 2
Fig. 2
Progression-free survival (PFS) and overall survival (OS) by circulating tumor cell (CTC) count. Kaplan-Meier curves displaying PFS and OS by baseline (BL) CTC count (≥ 5 CTCs) (a-b), by CTC count at BL and 1 month (c-d), by CTC count at BL and 3 months (e-f) and by CTC count at BL and 6 months (g-h) during the first 6 months of systemic therapy for MBC. Analyses at 1, 3, and 6 months were performed using landmark analysis, in which the follow-up time was recalculated with a new starting date from the 1, 3, and 6-month sample, respectively
Fig. 3
Fig. 3
Progression-free survival (PFS) and overall survival (OS) by circulating tumor cell (CTC) count and CTC cluster detection. Kaplan-Meier curves displaying PFS and OS by four groups including CTC count and CTC cluster detection at baseline (a-b) at 1 month (c-d), 3 months (e-f) and 6 months (g-h). The four groups were patients with no CTCs, patients with 1–4 CTCs and no clusters, patients with ≥ 5 CTCs and no clusters, and patients with > 1 CTC and clusters. Analyses at 1, 3, and 6 months were performed with landmark analysis where the follow-up time was recalculated with a new starting date from the 1, 3, and 6-month samples, respectively

References

    1. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–791. doi: 10.1056/NEJMoa040766.
    1. Cristofanilli M, Broglio KR, Guarneri V, Jackson S, Fritsche HA, Islam R, Dawood S, Reuben JM, Kau SW, Lara JM, et al. Circulating tumor cells in metastatic breast cancer: biologic staging beyond tumor burden. Clin Breast Cancer. 2007;7(6):471–479. doi: 10.3816/CBC.2007.n.004.
    1. Dawood S, Broglio K, Valero V, Reuben J, Handy B, Islam R, Jackson S, Hortobagyi GN, Fritsche H, Cristofanilli M. Circulating tumor cells in metastatic breast cancer: from prognostic stratification to modification of the staging system? Cancer. 2008;113(9):2422–2430. doi: 10.1002/cncr.23852.
    1. Nole F, Munzone E, Zorzino L, Minchella I, Salvatici M, Botteri E, Medici M, Verri E, Adamoli L, Rotmensz N, et al. Variation of circulating tumor cell levels during treatment of metastatic breast cancer: prognostic and therapeutic implications. Ann Oncol. 2008;19(5):891–897. doi: 10.1093/annonc/mdm558.
    1. Nakamura S, Yagata H, Ohno S, Yamaguchi H, Iwata H, Tsunoda N, Ito Y, Tokudome N, Toi M, Kuroi K, et al. Multi-center study evaluating circulating tumor cells as a surrogate for response to treatment and overall survival in metastatic breast cancer. Breast Cancer. 2010;17(3):199–204. doi: 10.1007/s12282-009-0139-3.
    1. Hartkopf AD, Wagner P, Wallwiener D, Fehm T, Rothmund R. Changing levels of circulating tumor cells in monitoring chemotherapy response in patients with metastatic breast cancer. Anticancer Res. 2011;31(3):979–984.
    1. Giuliano M, Giordano A, Jackson S, Hess KR, De Giorgi U, Mego M, Handy BC, Ueno NT, Alvarez RH, De Laurentiis M, et al. Circulating tumor cells as prognostic and predictive markers in metastatic breast cancer patients receiving first-line systemic treatment. Breast Cancer Res. 2011;13(3):R67. doi: 10.1186/bcr2907.
    1. Pierga JY, Hajage D, Bachelot T, Delaloge S, Brain E, Campone M, Dieras V, Rolland E, Mignot L, Mathiot C, et al. High independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in first-line chemotherapy for metastatic breast cancer patients. Ann Oncol. 2012;23(3):618–624. doi: 10.1093/annonc/mdr263.
    1. Martin M, Custodio S, de Las Casas ML, Garcia-Saenz JA, de la Torre JC, Bellon-Cano JM, Lopez-Tarruella S, Vidaurreta-Lazaro M, de la Orden V, Jerez Y, et al. Circulating tumor cells following first chemotherapy cycle: an early and strong predictor of outcome in patients with metastatic breast cancer. Oncologist. 2013;18(8):917–923. doi: 10.1634/theoncologist.2012-0479.
    1. Wallwiener M, Riethdorf S, Hartkopf AD, Modugno C, Nees J, Madhavan D, Sprick MR, Schott S, Domschke C, Baccelli I, et al. Serial enumeration of circulating tumor cells predicts treatment response and prognosis in metastatic breast cancer: a prospective study in 393 patients. BMC Cancer. 2014;14:512. doi: 10.1186/1471-2407-14-512.
    1. Smerage JB, Barlow WE, Hortobagyi GN, Winer EP, Leyland-Jones B, Srkalovic G, Tejwani S, Schott AF, O'Rourke MA, Lew DL, et al. Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J Clin Oncol. 2014;32(31):3483–3489. doi: 10.1200/JCO.2014.56.2561.
    1. Mu Z, Wang C, Ye Z, Austin L, Civan J, Hyslop T, Palazzo JP, Jaslow R, Li B, Myers RE, et al. Prospective assessment of the prognostic value of circulating tumor cells and their clusters in patients with advanced-stage breast cancer. Breast Cancer Res Treat. 2015;154(3):563–571. doi: 10.1007/s10549-015-3636-4.
    1. Wang C, Mu Z, Chervoneva I, Austin L, Ye Z, Rossi G, Palazzo JP, Sun C, Abu-Khalaf M, Myers RE, et al. Longitudinally collected CTCs and CTC-clusters and clinical outcomes of metastatic breast cancer. Breast Cancer Res Treat. 2017;161(1):83–94. doi: 10.1007/s10549-016-4026-2.
    1. Paoletti C, Li Y, Muniz MC, Kidwell KM, Aung K, Thomas DG, Brown ME, Abramson VG, Irvin WJ, Jr, Lin NU, et al. Significance of circulating tumor cells in metastatic triple-negative breast cancer patients within a randomized, phase II trial: TBCRC 019. Clin Cancer Res. 2015;21(12):2771–2779. doi: 10.1158/1078-0432.CCR-14-2781.
    1. Bidard FC, Peeters DJ, Fehm T, Nole F, Gisbert-Criado R, Mavroudis D, Grisanti S, Generali D, Garcia-Saenz JA, Stebbing J, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. 2014;15(4):406–414. doi: 10.1016/S1470-2045(14)70069-5.
    1. Yan WT, Cui X, Chen Q, Li YF, Cui YH, Wang Y, Jiang J. Circulating tumor cell status monitors the treatment responses in breast cancer patients: a meta-analysis. Sci Rep. 2017;7:43464. 10.1038/srep43464.
    1. Jansson S, Bendahl PO, Larsson AM, Aaltonen KE, Ryden L. Prognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with metastatic breast cancer in a prospective observational cohort. BMC Cancer. 2016;16:433. doi: 10.1186/s12885-016-2406-y.
    1. Fabisiewicz A, Grzybowska E. CTC clusters in cancer progression and metastasis. Med Oncol. 2017;34(1):12. 10.1007/s12032-016-0875-0.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45(2):228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstappen LW. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897–6904. doi: 10.1158/1078-0432.CCR-04-0378.
    1. Botteri E, Sandri MT, Bagnardi V, Munzone E, Zorzino L, Rotmensz N, Casadio C, Cassatella MC, Esposito A, Curigliano G, et al. Modeling the relationship between circulating tumour cells number and prognosis of metastatic breast cancer. Breast Cancer Res Treat. 2010;122(1):211–217. doi: 10.1007/s10549-009-0668-7.
    1. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumor marker prognostic studies (REMARK) J Natl Cancer Inst. 2005;97(16):1180–1184. doi: 10.1093/jnci/dji237.
    1. Molenberghs G, Kenward MG. Missing data in clinical studies, 1st edition. Chichester: Wiley; 2007.
    1. Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC, Matera J, Allard WJ, Doyle GV, Terstappen LW. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res. 2006;12(14 Pt 1):4218–4224. doi: 10.1158/1078-0432.CCR-05-2821.
    1. Budd GT, Cristofanilli M, Ellis MJ, Stopeck A, Borden E, Miller MC, Matera J, Repollet M, Doyle GV, Terstappen LW, et al. Circulating tumor cells versus imaging−predicting overall survival in metastatic breast cancer. Clin Cancer Res. 2006;12(21):6403–6409. doi: 10.1158/1078-0432.CCR-05-1769.
    1. Liu MC, Shields PG, Warren RD, Cohen P, Wilkinson M, Ottaviano YL, Rao SB, Eng-Wong J, Seillier-Moiseiwitsch F, Noone AM, et al. Circulating tumor cells: a useful predictor of treatment efficacy in metastatic breast cancer. J Clin Oncol. 2009;27(31):5153–5159. doi: 10.1200/JCO.2008.20.6664.
    1. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA. Yu M, Pely A, Engstrom A, Zhu H et al: Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158(5):1110–1122. doi: 10.1016/j.cell.2014.07.013.
    1. Watanabe S. The metastasizability of tumor cells. Cancer. 1954;7(2):215–223. doi: 10.1002/1097-0142(195403)7:2<215::AID-CNCR2820070203>;2-6.
    1. Fidler IJ. The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer. 1973;9(3):223–227. doi: 10.1016/S0014-2964(73)80022-2.
    1. Liotta LA, Saidel MG, Kleinerman J. The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res. 1976;36(3):889–894.
    1. Hou JM, Krebs MG, Lancashire L, Sloane R, Backen A, Swain RK, Priest LJ, Greystoke A, Zhou C, Morris K, et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol. 2012;30(5):525–532. doi: 10.1200/JCO.2010.33.3716.
    1. Rack B, Schindlbeck C, Juckstock J, Andergassen U, Hepp P, Zwingers T, Friedl TW, Lorenz R, Tesch H, Fasching PA, et al. Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J Natl Cancer Inst. 2014;106(5):1-11. 10.1093/jnci/dju273.
    1. Shiomi-Mouri Y, Kousaka J, Ando T, Tetsuka R, Nakano S, Yoshida M, Fujii K, Akizuki M, Imai T, Fukutomi T, et al. Clinical significance of circulating tumor cells (CTCs) with respect to optimal cut-off value and tumor markers in advanced/metastatic breast cancer. Breast Cancer. 2016;23(1):120–127. doi: 10.1007/s12282-014-0539-x.

Source: PubMed

3
Suscribir