Association between preoperative serum homocysteine and delayed neurocognitive recovery after non-cardiac surgery in elderly patients: a prospective observational study

Zhen-Feng Zhang, Qing-Chun Sun, Yi-Fan Xu, Ke Ding, Meng-Meng Dong, Liu Han, Abdul-Mannan, Yuan Han, Jun-Li Cao, Zhen-Feng Zhang, Qing-Chun Sun, Yi-Fan Xu, Ke Ding, Meng-Meng Dong, Liu Han, Abdul-Mannan, Yuan Han, Jun-Li Cao

Abstract

Background: Homocysteine, folate, and vitamin B12 involved in 1-carbon metabolism are associated with cognitive disorders. We sought to investigate the relationships between these factors and delayed neurocognitive recovery (dNCR) after non-cardiac surgery.

Methods: This was a prospective observational study of patients (n = 175) who were ≥ 60 years of age undergoing non-cardiac surgery. Patients were evaluated preoperatively and for 1 week postoperatively by using neuropsychological tests and were divided into dNCR or non-dNCR groups according to a Z-score ≤ - 1.96 on at least two of the tests. The relationship between the occurrence of dNCR and preoperative levels of homocysteine, folate, and vitamin B12 was analyzed. Univariate and multivariable logistic regression analyses were conducted to identify factors associated with dNCR.

Results: Delayed neurocognitive recovery was observed in 36 of 175 patients (20.6%; 95% confidence interval [CI], 14.5-26.6%) 1 week postoperatively. Patients who developed dNCR had significantly higher median [interquartile range (IQR)] homocysteine concentrations (12.8 [10.9,14.4] μmol/L vs 10.6 [8.6,14.7] μmol/L; P = 0.02) and lower folate concentrations (5.3 [4.2,7.3] ng/mL vs 6.9 [5.3,9.5] ng/mL; P = 0.01) than those without dNCR. Compared to the lowest tertile, the highest homocysteine tertile predicted dNCR onset (odds ratio [OR], 3.9; 95% CI, 1. 3 to 11.6; P = 0.02), even after adjusting for age, sex, education, and baseline Mini Mental State Examination.

Conclusions: Elderly patients with high homocysteine levels who underwent general anesthesia for non-cardiac surgery have an increased risk of dNCR. This knowledge could potentially assist in the development of preventative and/or therapeutic measures.

Trial registration: NCT03084393 ( https://www.clinicaltrials.gov ).

Keywords: Delayed neurocognitive recovery: risk factors; Neurocognitive; Nutrition.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Metabolic relationship between homocysteine, vitamin B12, and folate. CBS, cystathionine β-synthase; MS, methionine synthase; MTHFR, methylenetetrahydrofolate reductase
Fig. 2
Fig. 2
Recruitment, screening, and selection process of the study population
Fig. 3
Fig. 3
Forest plots showing ORs for tertiles of the homocysteine, folate and vitamin B12 levels in dNCR. 1 indicates comparing to tertile of 1st (≤ 9.6 μmol/L); 2 indicates comparing to tertile of 3rd (>8 ng/ml); 3 indicates comparing to tertile of 3rd (> 427 pg/mL). This figure illustrates the unadjusted model (●), adjusted model 1 for age, sex, education and MMSE (▲); and adjusted model 2 for age, sex, education, MMSE, the levels of homocysteine, folate and vitamin B12 (■). Abbreviations: MMSE, Mini Mental State Examination. *P < 0.05

References

    1. Androsova G, Krause R, Winterer G, Schneider R. Biomarkers of postoperative delirium and cognitive dysfunction. Front Aging Neurosci. 2015;7:112. doi: 10.3389/fnagi.2015.00112.
    1. Bailey SW, Ayling JE. The pharmacokinetic advantage of 5-methyltetrahydrofolate for minimization of the risk for birth defects. Sci Rep. 2018;8(1):4096. doi: 10.1038/s41598-018-22191-2.
    1. Bayes J, Agrawal N, Schloss J. The Bioavailability of Various Oral Forms of Folate Supplementation in Healthy Populations and Animal Models: a Systematic Review. J Altern Complement Med. 2019;25(2):169–180. doi: 10.1089/acm.2018.0086.
    1. Bekker A, Lee C, de Santi S, Pirraglia E, Zaslavsky A, Farber S, Haile M, de Leon MJ. Does mild cognitive impairment increase the risk of developing postoperative cognitive dysfunction? Am J Surg. 2010;199(6):782–788. doi: 10.1016/j.amjsurg.2009.07.042.
    1. Brown C, Deiner S. Perioperative cognitive protection. Br J Anaesth. 2016;117:iii52–iii61. doi: 10.1093/bja/aew361.
    1. Chambers JC, Ueland PM, Obeid OA, Wrigley J, Refsum H, Kooner JS. Improved vascular endothelial function after oral B vitamins: An effect mediated through reduced concentrations of free plasma homocysteine. Circulation. 2000;102(20):2479–2483. doi: 10.1161/01.CIR.102.20.2479.
    1. Dijkstra JB, Houx PJ, Jolles J. Cognition after major surgery in the elderly: test performance and complaints. Br J Anaesth. 1999;82(6):867–874. doi: 10.1093/bja/82.6.867.
    1. Douaud G, Refsum H, de Jager CA, Jacoby R, Nichols TE, Smith SM, Smith AD. Preventing Alzheimerʼs disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci U S A. 2013;110(23):9523–9528. doi: 10.1073/pnas.1301816110.
    1. Evered L, Silbert B, Knopman DS, Scott DA, DeKosky ST, Rasmussen LS, Oh ES, Crosby G, Berger M, Eckenhoff RG, Nomenclature Consensus Working Group Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. Can J Anaesth. 2018;65:1248–1257. doi: 10.1007/s12630-018-1216-x.
    1. Evered L, Silbert B, Scott DA, Ames D, Maruff P, Blennow K. Cerebrospinal fluid biomarker for Alzheimer disease predicts postoperative cognitive dysfunction. Anesthesiology. 2016;124(2):353–361. doi: 10.1097/ALN.0000000000000953.
    1. Evered LA, Silbert BS. Postoperative cognitive dysfunction and noncardiac surgery. Anesth Analg. 2018;127(2):496–505. doi: 10.1213/ANE.0000000000003514.
    1. Gurunathan U, Rahman T, Williams Z, Vandeleur A, Sriram S, Harch J, Boggett S, Hill C, Bowyer A, Royse C. Effect of midazolam in addition to propofol and opiate sedation on the quality of recovery after colonoscopy: a randomized clinical trial. Anesth Analg. 2020;131(3):741–750. doi: 10.1213/ANE.0000000000004620.
    1. Hakimoglu S, Hanci V, Hakimoglu Y, Cicek S, Yurtlu S, Okyay RD, Ayoglu H, Can M, Mungan G, Dursun A, Turan I. The effects of nitrous oxide on vitamin B12 and homocysteine levels in methyltetrahydrofolate reductase gene mutation. Bratisl Lek Listy. 2013;114(6):317–322. doi: 10.4149/bll_2013_067.
    1. Hama Y, Hamano T, Shirafuji N, Hayashi K, Ueno A, Enomoto S, et al. Influences of folate supplementation on homocysteine and cognition in patients with folate deficiency and cognitive impairment. Nutrients. 2020;12(10). 10.3390/nu12103138.
    1. Han Y, Han L, Dong MM, Sun QC, Zhang ZF, Ding K, Zhang YD, Mannan A, Xu YF, Ou-Yang CL, Li ZY, Gao C, Cao JL. Preoperative salivary cortisol AM/PM ratio predicts early postoperative cognitive dysfunction after noncardiac surgery in elderly patients. Anesth Analg. 2019;128(2):349–357. doi: 10.1213/ANE.0000000000003740.
    1. Hooshmand B, Polvikoski T, Kivipelto M, Tanskanen M, Myllykangas L, Erkinjuntti T, Makela M, Oinas M, Paetau A, Scheltens P, van Straaten EC, Sulkava R, Solomon A. Plasma homocysteine, Alzheimer and cerebrovascular pathology: a population-based autopsy study. Brain. 2013;136(9):2707–2716. doi: 10.1093/brain/awt206.
    1. Irizarry MC, Gurol ME, Raju S, Diaz-Arrastia R, Locascio JJ, Tennis M, Hyman BT, Growdon JH, Greenberg SM, Bottiglieri T. Association of homocysteine with plasma amyloid beta protein in aging and neurodegenerative disease. Neurology. 2005;65(9):1402–1408. doi: 10.1212/01.wnl.0000183063.99107.5c.
    1. Jacobsen DW. Homocysteine and vitamins in cardiovascular disease. Clin Chem. 1998;44(8):1833–1843. doi: 10.1093/clinchem/44.8.1833.
    1. Jacobson NS, Truax P. Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. J Consult Clin Psychol. 1991;59(1):12–19. doi: 10.1037/0022-006X.59.1.12.
    1. Jain D, Ma HK, Buckley N. Impact of ENIGMA trials on nitrous oxide: a survey of Canadian anesthesiologists and residents. Can J Anaesth. 2018;65(6):730–731. doi: 10.1007/s12630-018-1060-z.
    1. Jakubowski H. Homocysteine modification in protein structure/function and human disease. Physiol Rev. 2019;99(1):555–604. doi: 10.1152/physrev.00003.2018.
    1. Jensen MP, Chen C, Brugger AM. Interpretation of visual analog scale ratings and change scores: a reanalysis of two clinical trials of postoperative pain. J Pain. 2003;4(7):407–414. doi: 10.1016/S1526-5900(03)00716-8.
    1. Kamat PK, Kyles P, Kalani A, Tyagi N. Hydrogen sulfide ameliorates homocysteine-induced Alzheimerʼs disease-like pathology, blood-brain barrier disruption, and synaptic disorder. Mol Neurobiol. 2016;53(4):2451–2467. doi: 10.1007/s12035-015-9212-4.
    1. Leslie K, Myles PS, Chan MT, Forbes A, Paech MJ, Peyton P, Silbert BS, Williamson E. Nitrous oxide and long-term morbidity and mortality in the ENIGMA trial. Anesth Analg. 2011;112(2):387–393. doi: 10.1213/ANE.0b013e3181f7e2c4.
    1. Li JG, Chu J, Barrero C, Merali S, Pratico D. Homocysteine exacerbates beta-amyloid pathology, tau pathology, and cognitive deficit in a mouse model of Alzheimer disease with plaques and tangles. Ann Neurol. 2014;75(6):851–863. doi: 10.1002/ana.24145.
    1. Li Y, Huang T, Zheng Y, Muka T, Troup J, Hu FB. Folic Acid Supplementation and the Risk of Cardiovascular Diseases: A Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc. 2016;5(8):e003768. 10.1161/JAHA.116.003768.
    1. Lipton SA, Kim WK, Choi YB, Kumar S, DʼEmilia DM, Rayudu PV, Arnelle DR, Stamler JS. Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A. 1997;94(11):5923–5928. doi: 10.1073/pnas.94.11.5923.
    1. Mashour GA, Woodrum DT, Avidan MS. Neurological complications of surgery and anaesthesia. Br J Anaesth. 2015;114(2):194–203. doi: 10.1093/bja/aeu296.
    1. Meleady R, Ueland PM, Blom H, Whitehead AS, Refsum H, Daly LE, Vollset SE, Donohue C, Giesendorf B, Graham IM, Ulvik A, Zhang Y, Bjorke Monsen AL, Homocysteine ECCAP, Vascular D. Thermolabile methylenetetrahydrofolate reductase, homocysteine, and cardiovascular disease risk: the European Concerted Action Project. Am J Clin Nutr. 2003;77(1):63–70. doi: 10.1093/ajcn/77.1.63.
    1. Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H, Canet J, Rabbitt P, Jolles J, Larsen K, Hanning CD, Langeron O, Johnson T, Lauven PM, Kristensen PA, Biedler A, van Beem H, Fraidakis O, Silverstein JH, Beneken JE, Gravenstein JS. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. Lancet. 1998;351:857–861. doi: 10.1016/S0140-6736(97)07382-0.
    1. Monk TG, Saini V, Weldon BC, Sigl JC. Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg. 2005;100(1):4–10. doi: 10.1213/01.ANE.0000147519.82841.5E.
    1. Moretti R, Caruso P, Dal Ben M, Conti C, Gazzin S, Tiribelli C. Vitamin D, homocysteine, and folate in subcortical vascular dementia and Alzheimer dementia. Front Aging Neurosci. 2017;9:169. doi: 10.3389/fnagi.2017.00169.
    1. Nordt SP, Clark RF. Midazolam: a review of therapeutic uses and toxicity. J Emerg Med. 1997;15(3):357–365. doi: 10.1016/S0736-4679(97)00022-X.
    1. Padmanabhan U, Leslie K, Eer AS, Maruff P, Silbert BS. Early cognitive impairment after sedation for colonoscopy: the effect of adding midazolam and/or fentanyl to propofol. Anesth Analg. 2009;109(5):1448–1455. doi: 10.1213/ane.0b013e3181a6ad31.
    1. Paredes S, Cortinez L, Contreras V, Silbert B. Post-operative cognitive dysfunction at 3 months in adults after non-cardiac surgery: a qualitative systematic review. Acta Anaesthesiol Scand. 2016;60(8):1043–1058. doi: 10.1111/aas.12724.
    1. Quadri P, Fragiacomo C, Pezzati R, Zanda E, Forloni G, Tettamanti M, Lucca U. Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am J Clin Nutr. 2004;80(1):114–122. doi: 10.1093/ajcn/80.1.114.
    1. Ramos MI, Allen LH, Mungas DM, Jagust WJ, Haan MN, Green R, Miller JW. Low folate status is associated with impaired cognitive function and dementia in the Sacramento Area Latino Study on Aging. Am J Clin Nutr. 2005;82(6):1346–1352. doi: 10.1093/ajcn/82.6.1346.
    1. Rasmussen LS, Larsen K, Houx P, Skovgaard LT, Hanning CD, Moller JT, I. g. T. I. S. o. P. C. Dysfunction The assessment of postoperative cognitive function. Acta Anaesthesiol Scand. 2001;45(3):275–289. doi: 10.1034/j.1399-6576.2001.045003275.x.
    1. Rasmussen LS, O'Brien JT, Silverstein JH, Johnson TW, Siersma VD, Canet J, Jolles J, Hanning CD, Kuipers HM, Abildstrom H, Papaioannou A, Raeder J, Yli-Hankala A, Sneyd JR, Munoz L, Moller JT, Investigators I. Is peri-operative cortisol secretion related to post-operative cognitive dysfunction? Acta Anaesthesiol Scand. 2005;49(9):1225–1231. doi: 10.1111/j.1399-6576.2005.00791.x.
    1. Rogers JF, Morrison AL, Nafziger AN, Jones CL, Rocci ML, Jr, Bertino JS., Jr Flumazenil reduces midazolam-induced cognitive impairment without altering pharmacokinetics. Clin Pharmacol Ther. 2002;72(6):711–717. doi: 10.1067/mcp.2002.128866.
    1. Rossi A, Burkhart C, Dell-Kuster S, Pollock BG, Strebel SP, Monsch AU, Kern C, Steiner LA. Serum anticholinergic activity and postoperative cognitive dysfunction in elderly patients. Anesth Analg. 2014;119(4):947–955. doi: 10.1213/ANE.0000000000000390.
    1. Ruscin JM, Page RL, 2nd, Valuck RJ. Vitamin B(12) deficiency associated with histamine(2)-receptor antagonists and a proton-pump inhibitor. Ann Pharmacother. 2002;36(5):812–816. doi: 10.1345/aph.10325.
    1. Sachdev PS. Alzheimer disease: homocysteine and Alzheimer disease: an intervention study. Nat Rev Neurol. 2011;7(1):9–10. doi: 10.1038/nrneurol.2010.195.
    1. Sackett DL, Rosenberg WM. The need for evidence-based medicine. J R Soc Med. 1995;88(11):620–624.
    1. Scaglione F, Panzavolta G. Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica. 2014;44(5):480–488. doi: 10.3109/00498254.2013.845705.
    1. Silbert B, Evered L, Scott DA, McMahon S, Choong P, Ames D, Maruff P, Jamrozik K. Preexisting cognitive impairment is associated with postoperative cognitive dysfunction after hip joint replacement surgery. Anesthesiology. 2015;122(6):1224–1234. doi: 10.1097/ALN.0000000000000671.
    1. Suematsu N, Ojaimi C, Kinugawa S, Wang Z, Xu X, Koller A, Recchia FA, Hintze TH. Hyperhomocysteinemia alters cardiac substrate metabolism by impairing nitric oxide bioavailability through oxidative stress. Circulation. 2007;115(2):255–262. doi: 10.1161/CIRCULATIONAHA.106.652693.
    1. Vutskits L, Xie Z. Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nat Rev Neurosci. 2016;17(11):705–717. doi: 10.1038/nrn.2016.128.
    1. Weerink LBM, van Leeuwen BL, Gernaat SAM, Absalom AR, Huisman MG, van der Wal-Huisman H, Izaks GJ, de Bock GH. Vitamin status and the development of postoperative cognitive decline in elderly surgical oncologic patients. Ann Surg Oncol. 2018;25(1):231–238. doi: 10.1245/s10434-017-6118-6.
    1. Whitwam JG. Flumazenil and midazolam in anaesthesia. Acta Anaesthesiol Scand Suppl. 1995;108:15–22. doi: 10.1111/j.1399-6576.1995.tb04375.x.
    1. Zelle BA, Bhandari M, Sanchez AI, Probst C, Pape HC. Loss of follow-up in orthopaedic trauma: is 80% follow-up still acceptable? J Orthop Trauma. 2013;27(3):177–181. doi: 10.1097/BOT.0b013e31825cf367.
    1. Zietlow K, McDonald SR, Sloane R, Browndyke J, Lagoo-Deenadayalan S, Heflin MT. Preoperative cognitive impairment as a predictor of postoperative outcomes in a collaborative care model. J Am Geriatr Soc. 2018;66(3):584–589. doi: 10.1111/jgs.15261.

Source: PubMed

3
Suscribir