The ω-3 polyunsaturated fatty acid, eicosapentaenoic acid, attenuates abdominal aortic aneurysm development via suppression of tissue remodeling

Jack H Wang, Kosei Eguchi, Sahohime Matsumoto, Katsuhito Fujiu, Issei Komuro, Ryozo Nagai, Ichiro Manabe, Jack H Wang, Kosei Eguchi, Sahohime Matsumoto, Katsuhito Fujiu, Issei Komuro, Ryozo Nagai, Ichiro Manabe

Abstract

Abdominal aortic aneurysm (AAA) is a prevalent vascular disease that can progressively enlarge and rupture with a high rate of mortality. Inflammation and active remodeling of the aortic wall have been suggested to be critical in its pathogenesis. Meanwhile, ω-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) are known to reduce cardiovascular events, but its role in AAA management remains unclear. Here, we show that EPA can attenuate murine CaCl2-induced AAA formation. Aortas from BALB/c mice fed an EPA-diet appeared less inflamed, were significantly smaller in diameter compared to those from control-diet-fed mice, and had relative preservation of aortic elastic lamina. Interestingly, CT imaging also revealed markedly reduced calcification of the aortas after EPA treatment. Mechanistically, MMP2, MMP9, and TNFSF11 levels in the aortas were reduced after EPA treatment. Consistent with this finding, RAW264.7 macrophages treated with EPA showed attenuated Mmp9 levels after TNF-α simulation. These results demonstrate a novel role of EPA in attenuating AAA formation via the suppression of critical remodeling pathways in the pathogenesis of AAAs, and raise the possibility of using EPA for AAA prevention in the clinical setting.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. EPA reduces aortic aneurysm formation.
Figure 1. EPA reduces aortic aneurysm formation.
Gross morphological and histological analyses of aortas were performed at 6 weeks after perivascular application of CaCl2 to the infra-renal aorta. A. Representative images of in situ infra-renal aortas (demarcated by the broken lines) from mice in the sham-operated, control diet or EPA diet groups. B. Quantitative analysis of the maximal external aortic diameters of aortas. n = 4 for sham, n = 12 for control diet and EPA diet groups. C. Histological analysis by EVG staining, showing preserved aortic wall structure of the aorta from EPA diet group compared to the aorta from control diet group. Elastin breaks were also quantified. Scale bars, 200 µm (upper panels) and 50 µm (lower panels). n = 5 for sham, n = 11 for control diet, and n = 12 for EPA diet groups. Representative images of at least three independent experiments are shown in A and C. *P<0.05.
Figure 2. EPA suppressed aortic calcification after…
Figure 2. EPA suppressed aortic calcification after AAA-induction.
Aortic calcification was assessed by micro-CT imaging of in situ aortas 6 weeks after perivascular CaCl2 application. Both sagittal and transverse slices (A) show reduced overall calcification in the infra-renal aortas from EPA diet group compared to the control diet group, and this was consistent with the results of quantitative analysis of the total calcification volume in each aorta (B). n = 4 for control diet and EPA diet groups. Red arrowheads indicate the posterior wall of the infra-renal aorta. Representative images of two independent experiments are shown in A. *P<0.05 compared to control diet group.
Figure 3. EPA attenuates Mmp9 and Tnfsf11…
Figure 3. EPA attenuates Mmp9 and Tnfsf11 upregulation in CaCl2-induced AAA. A
. mRNA levels of the matrix metalloproteases Mmp2 and Mmp9, as well as their tissue inhibitors Timp1 and Timp2, in aortas at 1 and 3 weeks after perivascular CaCl2 application were analyzed using real-time RT-PCR. B. The mRNA levels of the factors known to be involved in the development of vascular calcification, Tnfsf11 and Tnfrsf11b, were also similarly analyzed using real-time RT-PCR. All expression levels were first normalized to 18s rRNA levels and then presented as fold change over the sham group. *P<0.05.
Figure 4. MMP2, MMP9, and RANKL expression…
Figure 4. MMP2, MMP9, and RANKL expression in AAAs.
A. Immunohistochemical staining for indicated proteins of serial sections of aortas one week after CaCl2 treatment. Elastic van Gieson staining is also shown. SM α-actin and F4/80 were stained to locate SMCs and macrophages, respectively. Shown are representative images of 4 or more samples in each group. Scale bars, 50 µm. B. Relative positive staining area of MMP2, MMP9, and RANKL in sections from control diet and EPA diet groups. n = 4–5. *P<0.05.
Figure 5. EPA reduces Mmp9 expression in…
Figure 5. EPA reduces Mmp9 expression in macrophages.
A. Gelatin zymography of aortic tissues one week after CaCl2 treatment together with quantitative analysis, showing reduced MMP9 activity in samples from the EPA diet group. Equal amounts of protein (20 µg) were loaded per aortic sample. For quantitation, n = 6–7 in each group. B. Gating strategy for the flow cytometric analysis of AAA macrophages. Macrophages were identified as Ly-6ClowCD11b+F4/80+Ly-6G− cells (full gating strategy shown in Figure S2 in File S1). C. The number of aortic macrophages per aortic sample. No statistically significant difference in the number of aortic macrophages between control diet and EPA diet groups was detected. D. The mRNA levels of Mmp9 in sorted aortic macrophages. Expression levels were first normalized to 18s rRNA levels and then further normalized to the level of control diet group. n = 5 in each group. E. RAW264.7 macrophages were cultured with either vehicle (10% BSA) or EPA (50 µmol/L) for 48 hours. The cells were then stimulated with recombinant mouse TNF-α (20 ng/mL) for a further 6 hours and harvested for analysis by RT-PCR. Expression levels were first normalized to 18s rRNA levels and then presented as relative expression compared to baseline vehicle sample. n = 3 per condition. *P<0.05 compared to control diet group in A and D or respective vehicle controls in E.

References

    1. Siegel CL, Cohan RH, Korobkin M, Alpern MB, Courneya DL, et al. (1994) Abdominal aortic aneurysm morphology: CT features in patients with ruptured and nonruptured aneurysms. Am J Roentgenol 163: 1123–1129.
    1. Force USPST (2005) Screening for abdominal aortic aneurysm: recommendation statement. Ann Intern Med 142: 198–202.
    1. Norman PE, Spilsbury K, Semmens JB (2011) Falling rates of hospitalization and mortality from abdominal aortic aneurysms in Australia. J Vasc Surg 53: 274–277.
    1. Weintraub NL (2009) Understanding abdominal aortic aneurysm. N Engl J Med 361: 1114–1116.
    1. Sakalihasan N, Limet R, Defawe OD (2005) Abdominal aortic aneurysm. Lancet 365: 1577–1589.
    1. Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, et al. (2002) Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 110: 625–632.
    1. Xiong W, Zhao Y, Prall A, Greiner TC, Baxter BT (2004) Key roles of CD4+ T cells and IFN-γ in the development of abdominal aortic aneurysms in a murine model. J Immunol 172: 2607–2612.
    1. Eliason JL, Hannawa KK, Ailawadi G, Sinha I, Ford JW, et al. (2005) Neutrophil depletion inhibits experimental abdominal aortic aneurysm formation. Circulation 112: 232–240.
    1. Yoshimura K, Aoki H, Ikeda Y, Fujii K, Akiyama N, et al. (2005) Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med 11: 1330–1338.
    1. Xiong W, MacTaggart J, Knispel R, Worth J, Persidsky Y, et al. (2009) Blocking TNF-α Attenuates Aneurysm Formation in a Murine Model. J Immunol 183: 2741–2746.
    1. Kris-Etherton PM, Harris WS, Appel LJ (2002) Nutrition Committee (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106: 2747–2757.
    1. Schwab JM, Chiang N, Arita M, Serhan CN (2007) Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447: 869–874.
    1. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, et al. (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142: 687–698.
    1. Tull SP, Yates CM, Maskrey BH, O'Donnell VB, Madden J, et al. (2009) Omega-3 fatty acids and inflammation: novel interactions reveal a new step in neutrophil recruitment. PLoS Biol 7: e1000177.
    1. Chen J, Shearer GC, Chen Q, Healy CL, Beyer AJ, et al. (2011) Omega-3 fatty acids prevent pressure overload-induced cardiac fibrosis through activation of cyclic GMP/protein kinase G signaling in cardiac fibroblasts. Circulation 123: 584–593.
    1. An WS, Kim HJ, Cho K-H, Vaziri ND (2009) Omega-3 fatty acid supplementation attenuates oxidative stress, inflammation, and tubulointerstitial fibrosis in the remnant kidney. Am J Physiol Renal Physiol 297: F895–903.
    1. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, et al. (2007) Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 369: 1090–1098.
    1. Saravanan P, Davidson NC, Schmidt EB, Calder PC (2010) Cardiovascular effects of marine omega-3 fatty acids. Lancet 376: 540–550.
    1. Matsumoto M, Sata M, Fukuda D, Tanaka K, Soma M, et al. (2008) Orally administered eicosapentaenoic acid reduces and stabilizes atherosclerotic lesions in ApoE-deficient mice. Atherosclerosis 197: 524–533.
    1. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8: 349–361.
    1. Wang Y, Krishna S, Golledge J (2013) The calcium chloride-induced rodent model of abdominal aortic aneurysm. Atherosclerosis 226: 29–39.
    1. Shimizu K, Mitchell RN, Libby P (2006) Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 26: 987–994.
    1. Collin-Osdoby P (2004) Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ Res 95: 1046–1057.
    1. Panizo S, Cardus A, Encinas M, Parisi E, Valcheva P, et al. (2009) RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4–dependent pathway. Circ Res 104: 1041–1048.
    1. Pyo R, Lee JK, Shipley JM, Curci JA, Mao D, et al. (2000) Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest 105: 1641–1649.
    1. Davis V, Persidskaia R, Baca-Regen L, Itoh Y, Nagase H, et al. (1998) Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 18: 1625–1633.
    1. Thompson RW, Holmes DR, Mertens RA, Liao S, Botney MD, et al. (1995) Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms. An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. J Clin Invest 96: 318–326.
    1. Fujiu K, Manabe I, Nagai R (2011) Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. J Clin Invest 121: 3425–3441.
    1. Gissi-HF Investigators (2008) Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet 372: 1223–1230.
    1. Bønaa KH, Bjerve KS, Straume B, Gram IT, Thelle D (1990) Effect of eicosapentaenoic and docosahexaenoic acids on blood pressure in hypertension. N Engl J Med 322: 795–801.
    1. Pradelli L, Mayer K, Muscaritoli M, Heller A (2012) n-3 fatty acid-enriched parenteral nutrition regimens in elective surgical and ICU patients: a meta-analysis. Crit Care 16: R184.
    1. Donadio JV, Bergstralh EJ, Offord KP, Spencer DC, Holley KE (1994) A controlled trial of fish oil in IgA nephropathy. N Engl J Med 331: 1194–1199.
    1. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92: 827–839.
    1. Allaire E, Forough R, Clowes M, Starcher B, Clowes AW (1998) Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J Clin Invest 102: 1413–1420.
    1. Defawe OD, Colige A, Lambert CA, Munaut C, Delvenne P, et al. (2003) TIMP-2 and PAI-1 mRNA levels are lower in aneurysmal as compared to athero-occlusive abdominal aortas. Cardiovasc Res 60: 205–213.
    1. Wang S, Zhang C, Zhang M, Liang B, Zhu H, et al. (2012) Activation of AMP-activated protein kinase alpha2 by nicotine instigates formation of abdominal aortic aneurysms in mice in vivo. Nat Med 18: 902–910.
    1. Abedin M, Lim J, Tang TB, Park D, Demer LL, et al. (2006) N-3 fatty acids inhibit vascular calcification via the p38-mitogen-activated protein kinase and peroxisome proliferator-activated receptor-gamma pathways. Circ Res 98: 727–729.
    1. Byon CH, Sun Y, Chen J, Yuan K, Mao X, et al. (2011) Runx2-upregulated receptor activator of nuclear factor κb ligand in calcifying smooth muscle cells promotes migration and osteoclastic differentiation of macrophages. Arterioscler Thromb Vasc Biol 31: 1387–1396.
    1. Daugherty A, Manning MW, Cassis LA (2000) Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 105: 1605–1612.
    1. Miyake T, Morishita R (2009) Pharmacological treatment of abdominal aortic aneurysm. Cardiovasc Res 83: 436–443.
    1. Lindeman JHN, Abdul-Hussien H, van Bockel JH, Wolterbeek R, Kleemann R (2009) Clinical trial of doxycycline for matrix metalloproteinase-9 inhibition in patients with an abdominal aneurysm: doxycycline selectively depletes aortic wall neutrophils and cytotoxic T cells. Circulation 119: 2209–2216.
    1. Mosorin M, Juvonen J, Biancari F, Satta J, Surcel H-M, et al. (2001) Use of doxycycline to decrease the growth rate of abdominal aortic aneurysms: A randomized, double-blind, placebo-controlled pilot study. J Vasc Surg 34: 606–610.
    1. Vammen S, Lindholt JS, Østergaard L, Fasting H, Henneberg EW (2001) Randomized double-blind controlled trial of roxithromycin for prevention of abdominal aortic aneurysm expansion. Br J Surg 88: 1066–1072.
    1. Rughani G, Robertson L, Clarke M (2012) Medical treatment for small abdominal aortic aneurysms. Cochrane Database Syst Rev 9.
    1. van der Meij E, Koning GG, Vriens PW, Peeters MF, Meijer CA, et al. (2013) A clinical evaluation of statin pleiotropy: statins selectively and dose-dependently reduce vascular inflammation. PLoS ONE 8: e53882.
    1. Itoh M, Suganami T, Satoh N, Tanimoto-Koyama K, Yuan X, et al. (2007) Increased adiponectin secretion by highly purified eicosapentaenoic acid in rodent models of obesity and human obese subjects. Arterioscler Thromb Vasc Biol 27: 1918–1925.
    1. Connor KM, SanGiovanni JP, Lofqvist C, Aderman CM, Chen J, et al. (2007) Increased dietary intake of [omega]-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 13: 868–873.
    1. Chiou AC, Chiu B, Pearce WH (2001) Murine aortic aneurysm produced by periarterial application of calcium chloride. J Surg Res 99: 371–376.
    1. Aikawa E, Aikawa M, Libby P, Figueiredo J-L, Rusanescu G, et al. (2009) Arterial and aortic valve calcification abolished by elastolytic cathepsin s deficiency in chronic renal disease. Circulation 119: 1785–1794.
    1. Yuan L-Q, Zhu J-H, Wang H-W, Liang Q-H, Xie H, et al. (2011) RANKL is a downstream mediator for insulin-induced osteoblastic differentiation of vascular smooth muscle cells. PLoS ONE 6: e29037.
    1. Hu X, Beeton C (2010) Detection of functional matrix metalloproteinases by zymography. J Vis Exp: e2445.
    1. Eguchi K, Manabe I, Oishi-Tanaka Y, Ohsugi M, Kono N, et al. (2012) Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell Metab 15: 518–533.
    1. Shen H, Eguchi K, Kono N, Fujiu K, Matsumoto S, et al. (2013) Saturated fatty acid palmitate aggravates neointima formation by promoting smooth muscle phenotypic modulation. Arterioscler Thromb Vasc Biol 33: 2596–2607.
    1. Wylie-Sears J, Aikawa E, Levine RA, Yang J-H, Bischoff J (2011) Mitral valve endothelial cells with osteogenic differentiation potential. Arterioscler Thromb Vasc Biol 31: 598–607.

Source: PubMed

3
Suscribir