Potassium Citrate Supplementation Decreases the Biochemical Markers of Bone Loss in a Group of Osteopenic Women: The Results of a Randomized, Double-Blind, Placebo-Controlled Pilot Study

Donatella Granchi, Renata Caudarella, Claudio Ripamonti, Paolo Spinnato, Alberto Bazzocchi, Annamaria Massa, Nicola Baldini, Donatella Granchi, Renata Caudarella, Claudio Ripamonti, Paolo Spinnato, Alberto Bazzocchi, Annamaria Massa, Nicola Baldini

Abstract

The relationship involving acid-base imbalance, mineral metabolism and bone health status has previously been reported but the efficacy of the alkalizing supplementation in targeting acid overload and preventing bone loss has not yet been fully elucidated. In this randomized, double-blind, placebo-controlled study, the hypothesis that potassium citrate (K citrate) modifies bone turnover in women with postmenopausal osteopenia was tested. Three hundred and ten women were screened; 40 women met the inclusion criteria and were randomly assigned to the treatment or the placebo group. They were treated with K citrate (30 mEq day-1) or a placebo in addition to calcium carbonate (500 mg day-1) and vitamin D (400 IU day-1). At baseline and time points of 3 and 6 months, serum indicators of renal function, electrolytes, calciotropic hormones, serum bone turnover markers (BTMs), tartrate-resistant acid phosphatase 5b (TRACP5b), carboxy-terminal telopeptide of type I collagen (CTX), bone alkaline phosphatase (BAP), procollagen type 1 N terminal propeptide (PINP)), and urine pH, electrolytes, and citrate were measured. The follow-up was completed by 17/20 patients in the "K citrate" group and 18/20 patients in the "placebo" group. At baseline, 90% of the patients exhibited low potassium excretion in 24 h urine samples, and 85% of cases had at least one urine parameter associated with low-grade acidosis (low pH, low citrate excretion). After treatment, CTX and BAP decreased significantly in both groups, but subjects with evidence of low-grade acidosis gained significant benefits from the treatment compared to the placebo. In patients with low 24h-citrate excretion at baseline, a 30% mean decrease in BAP and CTX was observed at 6 months. A significant reduction was also evident when low citrate (BAP: -25%; CTX: -35%) and a low pH (BAP: -25%; CTX: -30%) were found in fasting-morning urine. In conclusion, our results suggested that K citrate supplementation improved the beneficial effects of calcium and vitamin D in osteopenic women with a documented potassium and citrate deficit, and a metabolic profile consistent with low-grade acidosis.

Keywords: acid-base; bone remodeling; bone turnover markers; osteopenia; potassium citrate; urolithiasis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
CONSORT flow diagram.
Figure 2
Figure 2
Changes in urine (u) parameters according to treatment group. The line-graphs highlight the changes observed in both fasting-morning urine (A,C,E) and 24 h urine (B,D,F,G). Data are expressed as mean plus or minus the standard error of the mean (mean ± SEM) of the variations over time calculated in each subject as [(concentration at time point × concentration at baseline−1) − 1], with the baseline = 0. Symbols indicate the statistically significant differences over time (paired t test; * = p < 0.05 vs. Baseline); the symbol in square brackets indicates a statistically significant difference between groups at the time point highlighted by the arrow (unpaired t test; * = p < 0.05).
Figure 3
Figure 3
Bone turnover marker (BTM) changes (%) according to treatment group. The data regarding bone alkaline phosphatase (BAP) (A), carboxy-terminal telopeptide of type I collagen (CTX) (B), procollagen type 1 N terminal propeptide (PINP) (C) and tartrate-resistant acid phosphatase 5b (TRACP5b) (D) are expressed as mean ± SEM of the changes calculated in each subject as [(BTM concentration at the time point × BTM concentration at baseline−1) − 1] × 100, where the baseline is 0. Symbols indicate the statistically significant values obtained from the paired t test. K citrate group: * = p < 0.05 vs. Baseline; ** = p < 0.005 vs. Baseline; † = p < 0.05 vs. 3 months. Placebo group: § = p < 0.05 vs. Baseline; §§ = p < 0.005 vs. Baseline; ∇∇ = p < 0.005 vs. 3 months.
Figure 4
Figure 4
BAP changes (%) in the subgroups of patients with signs of low-grade acidosis at baseline. The BAP changes were analyzed in women who exhibited low urinary (u) pH in fasting-morning urine (A: n = 14), and low citrate excretion in both fasting-morning urine (B: n = 25) and 24 h urine (C:n = 23; D: n = 13). Data are expressed as mean ± SEM of the BAP change calculated in each subject as described in Figure 3. The symbols indicate the statistically significant values obtained with the paired t test. K citrate group: * = p < 0.05 vs. Baseline; ** = p < 0.005 vs. Baseline; † = p < 0.05 vs. 3 months; †† = p < 0.005 vs. 3 months. Placebo group: § = p< 0.05 vs. Baseline; ∇ = p < 0.05 vs. 3 months.
Figure 5
Figure 5
CTX changes (%) in subgroups of patients with signs of low-grade acidosis at baseline. The CTX changes were analyzed in the women who exhibited low urinary (u) pH in fasting-morning urine (A: n = 14), and low citrate excretion in both fasting-morning urine (B: n = 25) and 24 h urine (C: n = 23; D: n = 13). Data are expressed as mean ± SEM of the CTX change calculated in each subject as described in Figure 3. The symbols indicate the statistically significant values obtained with the paired t test. K citrate group: * = p < 0.05 vs. Baseline; † = p < 0.05 vs. 3 months. Placebo group: § = p < 0.05 vs. Baseline; ∇ = p < 0.05 vs. 3 months.
Figure 6
Figure 6
BTM changes in the last three-month period of treatment. Data are expressed as mean ± SEM of the changes calculated in each subject as [(BTM concentration at 6 months × BTM concentration at 3 months−1) − 1] × 100, where the 3-month value is 0. The bars represent the variation in CTX (A), BAP (B), and PINP (C) in all patients and subgroups who completed the follow-up. All patients: n = 35. Number of patients with altered parameters in fasting-morning urine: n = 13, pH <5.5; n = 20, citrate <3.3 mol L−1; n = 32, low citrate and/or pH. Number of patients with altered parameters in 24 h urine: n = 20, citrate <3.3 mol day−1; n = 11, citrate/creatinine <0.3 mol mol−1; n = 32, citrate and/or pH. The significant differences between K citrate and the placebo are highlighted by p values < 0.05 over the bars.
Figure 6
Figure 6
BTM changes in the last three-month period of treatment. Data are expressed as mean ± SEM of the changes calculated in each subject as [(BTM concentration at 6 months × BTM concentration at 3 months−1) − 1] × 100, where the 3-month value is 0. The bars represent the variation in CTX (A), BAP (B), and PINP (C) in all patients and subgroups who completed the follow-up. All patients: n = 35. Number of patients with altered parameters in fasting-morning urine: n = 13, pH <5.5; n = 20, citrate <3.3 mol L−1; n = 32, low citrate and/or pH. Number of patients with altered parameters in 24 h urine: n = 20, citrate <3.3 mol day−1; n = 11, citrate/creatinine <0.3 mol mol−1; n = 32, citrate and/or pH. The significant differences between K citrate and the placebo are highlighted by p values < 0.05 over the bars.
Figure 7
Figure 7
Diagram showing some of the mechanisms that explain the relationship between diminished citrate excretion and bone loss in postmenopausal women. Estrogen deficiency promotes the activity of multicellular units (BRUs) containing osteoclasts (OCs) and osteoblasts (OBs) which, in sequence, resorb old bone and form new bone. The “net bone loss” depends on the increased bone resorption by OCs which exceed the new bone formation since osteogenic precursors (MSCs) are destined to differentiate into adipocytes, and the number and function of OBs are decreased. Bone resorption should favor the availability of citrate embedded in the bone matrix (green topic), but the lower production and the higher consumption (yellow topics) cause a “net citrate loss”.

References

    1. Al-Safi Z., Santoro N. The Postmenopausal Woman. In: De Groot L.J., Chrousos G., Dungan K., Feingold K.R., Grossman A., Hershman J.M., Koch C., Korbonits M., McLachlan R., New M., et al., editors. Endotext. , Inc.; South Dartmouth, MA, USA: 2000. [(accessed on 26 July 2018)]. Available online:
    1. Raisz L.G. Pathogenesis of osteoporosis: Concepts, conflicts, and prospects. J. Clin. Investig. 2005;115:3318–3325. doi: 10.1172/JCI27071.
    1. Khosla S., Oursler M.J., Monroe D.G. Estrogen and the skeleton. Trends Endocrinol. Metab. 2012;23:576–581. doi: 10.1016/j.tem.2012.03.008.
    1. Delaisse J.M. The reversal phase of the bone-remodeling cycle: Cellular prerequisites for coupling resorption and formation. Bonekey Rep. 2014;3:561. doi: 10.1038/bonekey.2014.56.
    1. Kwan P. Osteoporosis: From osteoscience to neuroscience and beyond. Mech. Ageing Dev. 2015;145:26–38. doi: 10.1016/j.mad.2015.02.001.
    1. International Osteoporosis Foundation Facts and Statistics. [(accessed on 26 July 2018)]; Available online: .
    1. Abrahamsen B., van Staa T., Ariely R., Olson M., Cooper C. Excess mortality following hip fracture: A systematic epidemiological review. Osteoporos. Int. 2009;20:1633–1650. doi: 10.1007/s00198-009-0920-3.
    1. Siris E.S., Chen Y.T., Abbott T.A., Barrett-Connor E., Miller P.D., Wehren L.E., Berger M.L. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch. Intern. Med. 2004;164:1108–1112. doi: 10.1001/archinte.164.10.1108.
    1. Lello S., Sorge R., Surico N., OMERO Study Group Osteoporosis’s Menopausal Epidemiological Risk Observation (O.M.E.R.O.) study. Gynecol. Endocrinol. 2015;31:992–998. doi: 10.3109/09513590.2015.1063605.
    1. Kanis J.A., Johnell O., Oden A., Johansson H., McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 2008;19:385–397. doi: 10.1007/s00198-007-0543-5.
    1. Nicoll R., McLaren Howard J. The acid-ash hypothesis revisited: A reassessment of the impact of dietary acidity on bone. J. Bone Miner. Metab. 2014;32:469–475. doi: 10.1007/s00774-014-0571-0.
    1. Arnett T.R. Acidosis, hypoxia and bone. Arch. Biochem. Biophys. 2010;503:103–109. doi: 10.1016/j.abb.2010.07.021.
    1. Lencel P., Magne D. Inflammaging: The driving force in osteoporosis? Med. Hypotheses. 2011;76:317–321. doi: 10.1016/j.mehy.2010.09.023.
    1. Carnauba R.A., Baptistella A.B., Paschoal V., Hubscher G.H. Diet-Induced low-grade metabolic acidosis and clinical outcomes: A review. Nutrients. 2017;9:538. doi: 10.3390/nu9060538.
    1. Jassal S.K., von Muhlen D., Barrett-Connor E. Measures of renal function, BMD, bone loss, and osteoporotic fracture in older adults: The Rancho Bernardo study. J. Bone Miner. Res. 2007;22:203–210. doi: 10.1359/jbmr.061014.
    1. Fenton T.R., Tough S.C., Lyon A.W., Eliasziw M., Hanley D.A. Causal assessment of dietary acid load and bone disease: A systematic review & meta-analysis applying Hill’s epidemiologic criteria for causality. Nutr. J. 2011;10:41. doi: 10.1186/1475-2891-10-41.
    1. Fenton T.R., Lyon A.W., Eliasziw M., Tough S.C., Hanley D.A. Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance. J. Bone Miner. Res. 2009;24:1835–1840. doi: 10.1359/jbmr.090515.
    1. Gambaro G., Trinchieri A. Recent advances in managing and understanding nephrolithiasis/nephrocalcinosis. F1000Res. 2016:5. doi: 10.12688/f1000research.7126.1.
    1. Krieger N.S., Bushinsky D.A. The relation between bone and stone formation. Calcif. Tissue Int. 2013;93:374–381. doi: 10.1007/s00223-012-9686-2.
    1. Arrabal-Polo M.A., Cano-Garcia Mdel C., Canales B.K., Arrabal-Martin M. Calcium nephrolithiasis and bone demineralization: Pathophysiology, diagnosis, and medical management. Curr. Opin. Urol. 2014;24:633–638. doi: 10.1097/MOU.0000000000000111.
    1. Granchi D., Caudarella R., Ripamonti C., Spinnato P., Bazzocchi A., Torreggiani E., Massa A., Baldini N. Association between markers of bone loss and urinary lithogenic risk factors in osteopenic postmenopausal women. J. Biol. Regul. Homeost. Agents. 2016;30:145–151.
    1. Esche J., Johner S., Shi L., Schonau E., Remer T. Urinary citrate, an index of acid-base status, predicts bone strength in youths and fracture risk in adult females. J. Clin. Endocrinol. Metab. 2016;101:4914–4921. doi: 10.1210/jc.2016-2677.
    1. Mizunashi K., Furukawa Y., Katano K., Abe K. Effect of omeprazole, an inhibitor of H+, K (+)-ATPase, on bone resorption in humans. Calcif. Tissue Int. 1993;53:21–25. doi: 10.1007/BF01352010.
    1. Fraser L.A., Leslie W.D., Targownik L.E., Papaioannou A., Adachi J.D., CaMos Research Group The effect of proton pump inhibitors on fracture risk: Report from the Canadian Multicenter Osteoporosis Study. Osteoporos. Int. 2013;24:1161–1168. doi: 10.1007/s00198-012-2112-9.
    1. Lambert H., Frassetto L., Moore J.B., Torgerson D., Gannon R., Burckhardt P., Lanham-New S. The effect of supplementation with alkaline potassium salts on bone metabolism: A meta-analysis. Osteoporos. Int. 2015;26:1311–1318. doi: 10.1007/s00198-014-3006-9.
    1. Vescini F., Buffa A., La Manna G., Ciavatti A., Rizzoli E., Bottura A., Stefoni S., Caudarella R. Long-term potassium citrate therapy and bone mineral density in idiopathic calcium stone formers. J. Endocrinol. Investig. 2005;28:218–222. doi: 10.1007/BF03345376.
    1. Granchi D., Torreggiani E., Massa A., Caudarella R., Di Pompo G., Baldini N. Potassium citrate prevents increased osteoclastogenesis resulting from acidic conditions: Implication for the treatment of postmenopausal bone loss. PLoS ONE. 2017;12:e0181230. doi: 10.1371/journal.pone.0181230.
    1. Rivers K., Shetty S., Menon M. When and how to evaluate a patient with nephrolithiasis. Urol. Clin. N. Am. 2000;27:203–213. doi: 10.1016/S0094-0143(05)70251-2.
    1. Marangella M., Di Stefano M., Casalis S., Berutti S., D’Amelio P., Isaia G.C. Effects of potassium citrate supplementation on bone metabolism. Calcif. Tissue Int. 2004;74:330–335. doi: 10.1007/s00223-003-0091-8.
    1. Mayo Clinic Medical Laboratories Endocrinology Catalog Bone/Minerals. [(accessed on 26 July 2018)]; Available online: .
    1. Krupp D., Shi L., Remer T. Longitudinal relationships between diet-dependent renal acid load and blood pressure development in healthy children. Kidney Int. 2014;85:204–210. doi: 10.1038/ki.2013.331.
    1. Eastell R., Szulc P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 2017;5:908–923. doi: 10.1016/S2213-8587(17)30184-5.
    1. Moseley K.F., Weaver C.M., Appel L., Sebastian A., Sellmeyer D.E. Potassium citrate supplementation results in sustained improvement in calcium balance in older men and women. J. Bone Miner. Res. 2013;28:497–504. doi: 10.1002/jbmr.1764.
    1. Shao J., Zhong B. Last observation carry-forward and last observation analysis. Stat. Med. 2003;22:2429–2441. doi: 10.1002/sim.1519.
    1. Schulz K.F., Altman D.G., Moher D., CONSORT Group CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. Trials. 2010;11:32. doi: 10.1186/1745-6215-11-32.
    1. Pak C.Y., Resnick M.I. Medical therapy and new approaches to management of urolithiasis. Urol. Clin. N. Am. 2000;27:243–253. doi: 10.1016/S0094-0143(05)70254-8.
    1. Lucato P., Trevisan C., Stubbs B., Zanforlini B.M., Solmi M., Luchini C., Girotti G., Pizzato S., Manzato E., Sergi G., et al. Nephrolithiasis, bone mineral density, osteoporosis, and fractures: A systematic review and comparative meta-analysis. Osteoporos. Int. 2016;27:3155–3164. doi: 10.1007/s00198-016-3658-8.
    1. Domrongkitchaiporn S., Stitchantrakul W., Kochakarn W. Causes of hypocitraturia in recurrent calcium stone formers: Focusing on urinary potassium excretion. Am. J. Kidney Dis. 2006;48:546–554. doi: 10.1053/j.ajkd.2006.06.008.
    1. Sellmeyer D.E., Schloetter M., Sebastian A. Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet. J. Clin. Endocrinol. Metab. 2002;87:2008–2012. doi: 10.1210/jcem.87.5.8470.
    1. Sakhaee K., Maalouf N.M., Abrams S.A., Pak C.Y. Effects of potassium alkali and calcium supplementation on bone turnover in postmenopausal women. J. Clin. Endocrinol. Metab. 2005;90:3528–3533. doi: 10.1210/jc.2004-2451.
    1. Jehle S., Zanetti A., Muser J., Hulter H.N., Krapf R. Partial neutralization of the acidogenic Western diet with potassium citrate increases bone mass in postmenopausal women with osteopenia. J. Am. Soc. Nephrol. 2006;17:3213–3222. doi: 10.1681/ASN.2006030233.
    1. Macdonald H.M., Black A.J., Aucott L., Duthie G., Duthie S., Sandison R., Hardcastle A.C., Lanham New S.A., Fraser W.D., Reid D.M. Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: A randomized controlled trial. Am. J. Clin. Nutr. 2008;88:465–474. doi: 10.1093/ajcn/88.2.465.
    1. Karp H.J., Ketola M.E., Lamberg-Allardt C.J. Acute effects of calcium carbonate, calcium citrate and potassium citrate on markers of calcium and bone metabolism in young women. Br. J. Nutr. 2009;102:1341–1347. doi: 10.1017/S0007114509990195.
    1. Jehle S., Hulter H.N., Krapf R. Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: A randomized controlled trial. J. Clin. Endocrinol. Metab. 2013;98:207–217. doi: 10.1210/jc.2012-3099.
    1. Gregory N.S., Kumar R., Stein E.M., Alexander E., Christos P., Bockman R.S., Rodman J.S. Potassium citrate decreases bone resorption in postmenopausal women with osteopenia: A randomized, double-blind clinical trial. Endocr. Pract. 2015;21:1380–1386. doi: 10.4158/EP15738.OR.
    1. Eastell R., Pigott T., Gossiel F., Naylor K.E., Walsh J.S., Peel N.F.A. Diagnosis of endocrine disease: Bone turnover markers: Are they clinically useful? Eur. J. Endocrinol. 2018;178:R19–R31. doi: 10.1530/EJE-17-0585.
    1. Diez-Perez A., Naylor K.E., Abrahamsen B., Agnusdei D., Brandi M.L., Cooper C., Dennison E., Eriksen E.F., Gold D.T., Guanabens N., et al. International osteoporosis foundation and european calcified tissue society working group. Recommendations for the screening of adherence to oral bisphosphonates. Osteoporos. Int. 2017;28:767–774. doi: 10.1007/s00198-017-3906-6.
    1. Krege J.H., Lane N.E., Harris J.M., Miller P.D. PINP as a biological response marker during teriparatide treatment for osteoporosis. Osteoporos. Int. 2014;25:2159–2171. doi: 10.1007/s00198-014-2646-0.
    1. Anastasilakis A.D., Goulis D.G., Polyzos S.A., Gerou S., Koukoulis G.N., Efstathiadou Z., Kita M., Avramidis A. Head-to-head comparison of risedronate vs. teriparatide on bone turnover markers in women with postmenopausal osteoporosis: A randomised trial. Int. J. Clin. Pract. 2008;62:919–924. doi: 10.1111/j.1742-1241.2008.01768.x.
    1. Marie P.J. Strontium ranelate: A physiological approach for optimizing bone formation and resorption. Bone. 2006;38:S10–S14. doi: 10.1016/j.bone.2005.07.029.
    1. Bonjour J.P. Nutritional disturbance in acid-base balance and osteoporosis: A hypothesis that disregards the essential homeostatic role of the kidney. Br. J. Nutr. 2013;110:1168–1177. doi: 10.1017/S0007114513000962.
    1. Zuckerman J.M., Assimos D.G. Hypocitraturia: Pathophysiology and medical management. Rev. Urol. 2009;11:134–144.
    1. Perna S., Avanzato I., Nichetti M., D’Antona G., Negro M., Rondanelli M. Association between dietary patterns of meat and fish consumption with bone mineral density or fracture risk: A systematic literature. Nutrients. 2017;9:1029. doi: 10.3390/nu9091029.
    1. Frassetto L., Banerjee T., Powe N., Sebastian A. Acid Balance, Dietary acid load, and bone effects-a controversial subject. Nutrients. 2018;10:517. doi: 10.3390/nu10040517.
    1. Caudarella R., Vescini F., Buffa A., Stefoni S. Citrate and mineral metabolism: Kidney stones and bone disease. Front. Biosci. 2003;8:S1084–S1106.
    1. Drake M.T., Clarke B.L., Lewiecki E.M. The Pathophysiology and Treatment of Osteoporosis. Clin. Ther. 2015;37:1837–1850. doi: 10.1016/j.clinthera.2015.06.006.
    1. Franklin R.B., Chellaiah M., Zou J., Reynolds M.A., Costello L.C. Evidence that Osteoblasts are Specialized Citrate-producing Cells that Provide the citrate for incorporation into the structure of bone. Open Bone J. 2014;6:1–7. doi: 10.2174/1876525401406010001.
    1. Kim J.M., Jeong D., Kang H.K., Jung S.Y., Kang S.S., Min B.M. Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL-stimulated osteoclast differentiation. Cell. Physiol. Biochem. 2007;20:935–946. doi: 10.1159/000110454.
    1. Lemma S., Sboarina M., Porporato P.E., Zini N., Sonveaux P., Di Pompo G., Baldini N., Avnet S. Energy metabolism in osteoclast formation and activity. Int. J. Biochem. Cell Biol. 2016;79:168–180. doi: 10.1016/j.biocel.2016.08.034.
    1. Chen H., Wang Y., Dai H., Tian X., Cui Z.K., Chen Z., Hu L., Song Q., Liu A., Zhang Z., et al. Bone and plasma citrate is reduced in osteoporosis. Bone. 2018;114:189–197. doi: 10.1016/j.bone.2018.06.014.
    1. Moore C.G., Carter R.E., Nietert P.J., Stewart P.W. Recommendations for planning pilot studies in clinical and translational research. Clin. Transl. Sci. 2011;4:332–337. doi: 10.1111/j.1752-8062.2011.00347.x.

Source: PubMed

3
Suscribir