Neurovascular microcirculatory vasodilation mediated by C-fibers and Transient receptor potential vanilloid-type-1 channels (TRPV 1) is impaired in type 1 diabetes

P Marche, S Dubois, P Abraham, E Parot-Schinkel, L Gascoin, A Humeau-Heurtier, P H Ducluzeau, G Mahe, P Marche, S Dubois, P Abraham, E Parot-Schinkel, L Gascoin, A Humeau-Heurtier, P H Ducluzeau, G Mahe

Abstract

Microvascular dysfunction may have an early onset in type 1 diabetes (T1D) and can precede major complications. Our objectives were to assess the endothelial-dependent (acetylcholine, ACh; and post-occlusive hyperemia, PORH), non-endothelial-dependent (sodium nitroprusside, SNP) and neurovascular-dependent (local heating, LH and current induced vasodilation, CIV) microcirculatory vasodilation in T1D patients compared with matched control subjects using a laser speckle contrast imager. Seventeen T1D patients - matched with 17 subjects according to age, gender, Body-Mass-Index, and smoking status - underwent macro- and microvascular investigations. The LH early peak assessed the transient receptor potential vanilloid type 1 channels (TRPV1) mediated vasodilation, whereas the plateau assessed the Nitirc-Oxyde (NO) and endothelium-derived hyperpolarizing factor (EDHF) pathways. PORH explored sensory nerves and (EDHF), while CIV assessed sensory nerves (C-fibers) and prostaglandin-mediated vasodilation. Using neurological investigations, we observed that C-fiber and A-delta fiber functions in T1D patients were similar to control subjects. PORH, CIV, LH peak and plateau vasodilations were significantly decreased in T1D patients compared to controls, whereas there was no difference between the two groups for ACh and SNP vasodilations. Neurovascular microcirculatory vasodilations (C-fibers and TRPV 1-mediated vasodilations) are impaired in TD1 patients whereas no abnormalities were found using clinical neurological investigations. Clinicaltrials: No. NCT02538120.

Conflict of interest statement

The authors declare no competing financial interests.

Figures

Figure 1. Mean cutaneous vascular conductance (CVC:…
Figure 1. Mean cutaneous vascular conductance (CVC: LSPU/mmHg) in type 1 diabetic patients in response to each microvascular stimulation compared to control subjects.
Bars represent the mean ± SD. LSPU means Laser Speckle Perfusion Unit. *p 

References

    1. Harjutsalo V., Forsblom C. & Groop P.-H. Time trends in mortality in patients with type 1 diabetes: nationwide population based cohort study. BMJ 343, d5364 (2011).
    1. Deli G., Bosnyak E., Pusch G., Komoly S. & Feher G. Diabetic neuropathies: diagnosis and management. Neuroendocrinology 98, 267–280 (2013).
    1. Perkins B. A., Olaleye D., Zinman B. & Bril V. Simple screening tests for peripheral neuropathy in the diabetes clinic. Diabetes Care 24, 250–256 (2001).
    1. Veves A. et al.. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes 47, 457–463 (1998).
    1. Joannides R., Bellien J. & Thuillez C. Clinical methods for the evaluation of endothelial function– a focus on resistance arteries. Fundam. Clin. Pharmacol. 20, 311–320 (2006).
    1. Quattrini C., Harris N. D., Malik R. A. & Tesfaye S. Impaired skin microvascular reactivity in painful diabetic neuropathy. Diabetes Care 30, 655–659 (2007).
    1. Bellien J. et al.. Early stage detection of conduit artery endothelial dysfunction in patients with type 1 diabetes. Diab. Vasc. Dis. Res. 7, 158–166 (2010).
    1. Puissant C. et al.. [Endothelial function: role, assessment and limits]. J. Mal. Vasc. 39, 47–56 (2014).
    1. McMillan D. E. Deterioration of the microcirculation in diabetes. Diabetes 24, 944–957 (1975).
    1. Mahé G., Humeau-Heurtier A., Durand S., Leftheriotis G. & Abraham P. Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging. Circ. Cardiovasc. Imaging 5, 155–163 (2012).
    1. Nabavi Nouri M. et al.. Diabetic neuropathy and axon reflex-mediated neurogenic vasodilatation in type 1 diabetes. PloS One 7, e34807 (2012).
    1. Khan F., Elhadd T. A., Greene S. A. & Belch J. J. Impaired skin microvascular function in children, adolescents, and young adults with type 1 diabetes. Diabetes Care 23, 215–220 (2000).
    1. Katz A., Ekberg K., Johansson B. L. & Wahren J. Diminished skin blood flow in Type I diabetes: evidence for non-endothelium-dependent dysfunction. Clin. Sci. Lond. Engl. 1979 101, 59–64 (2001).
    1. Heimhalt-El Hamriti M. et al.. Impaired skin microcirculation in paediatric patients with type 1 diabetes mellitus. Cardiovasc. Diabetol. 12, 115 (2013).
    1. Gomes M. B., Matheus A. S. M. & Tibiriçá E. Evaluation of microvascular endothelial function in patients with type 1 diabetes using laser-Doppler perfusion monitoring: which method to choose? Microvasc. Res. 76, 132–133 (2008).
    1. Breiner A., Lovblom L. E., Perkins B. A. & Bril V. Does the prevailing hypothesis that small-fiber dysfunction precedes large-fiber dysfunction apply to type 1 diabetic patients? Diabetes Care 37, 1418–1424 (2014).
    1. Arora S. et al.. Differences in foot and forearm skin microcirculation in diabetic patients with and without neuropathy. Diabetes Care 21, 1339–1344 (1998).
    1. Johnstone M. T. et al.. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 88, 2510–2516 (1993).
    1. Wong B. J. & Fieger S. M. Transient receptor potential vanilloid type 1 channels contribute to reflex cutaneous vasodilation in humans. J. Appl. Physiol. Bethesda Md 1985 112, 2037–2042 (2012).
    1. Brito R., Sheth S., Mukherjea D., Rybak L. P. & Ramkumar V. TRPV1: A Potential Drug Target for Treating Various Diseases. Cells 3, 517–545 (2014).
    1. Jancsó G., Kiraly E. & Jancsó-Gábor A. Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones. Nature 270, 741–743 (1977).
    1. Robbins N., Koch S. E. & Rubinstein J. Targeting TRPV1 and TRPV2 for potential therapeutic interventions in cardiovascular disease. Transl. Res. J. Lab. Clin. Med. 161, 469–476 (2013).
    1. Krishnan S. T. M., Quattrini C., Jeziorska M., Malik R. A. & Rayman G. Abnormal LDIflare but normal quantitative sensory testing and dermal nerve fiber density in patients with painful diabetic neuropathy. Diabetes Care 32, 451–455 (2009).
    1. Minson C. T., Berry L. T. & Joyner M. J. Nitric oxide and neurally mediated regulation of skin blood flow during local heating. J. Appl. Physiol. Bethesda Md 1985 91, 1619–1626 (2001).
    1. Razavi R. et al.. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell 127, 1123–1135 (2006).
    1. Sadeh M. et al.. Association of the M3151 variant in the transient receptor potential vanilloid receptor-1 (TRPV1) gene with type 1 diabetes in an Ashkenazi Jewish population. Isr. Med. Assoc. J. IMAJ 15, 477–480 (2013).
    1. Wilder-Smith E. P., Ong W.-Y., Guo Y. & Chow A. W.-L. Epidermal transient receptor potential vanilloid 1 in idiopathic small nerve fibre disease, diabetic neuropathy and healthy human subjects. Histopathology 51, 674–680 (2007).
    1. Mahé G. et al.. Evidence for a vasomotor cyclo-oxygenase dependent mechanism of sensitization at the cutaneous level. Br. J. Clin. Pharmacol. 80, 185–192 (2015).
    1. Rousseau P. et al.. Axon-reflex cutaneous vasodilatation is impaired in type 2 diabetic patients receiving chronic low-dose aspirin. Microvasc. Res. 78, 218–223 (2009).
    1. Durand S., Fromy B., Bouyé P., Saumet J. L. & Abraham P. Current-induced vasodilation during water iontophoresis (5 min, 0.10 mA) is delayed from current onset and involves aspirin sensitive mechanisms. J. Vasc. Res. 39, 59–71 (2002).
    1. Yamamoto-Suganuma R. & Aso Y. Relationship between post-occlusive forearm skin reactive hyperaemia and vascular disease in patients with Type 2 diabetes–a novel index for detecting micro- and macrovascular dysfunction using laser Doppler flowmetry. Diabet. Med. J. Br. Diabet. Assoc. 26, 83–88 (2009).
    1. Araszkiewicz A. et al.. In diabetic Charcot neuroarthropathy impaired microvascular function is related to long lasting metabolic control and low grade inflammatory process. Microvasc. Res. 101, 143–147 (2015).
    1. Schlager O. et al.. Microvascular autoregulation in children and adolescents with type 1 diabetes mellitus. Diabetologia 55, 1633–1640 (2012).
    1. Lorenzo S. & Minson C. T. Human cutaneous reactive hyperaemia: role of BKCa channels and sensory nerves. J. Physiol. 585, 295–303 (2007).
    1. Cracowski J.-L. et al.. Involvement of cytochrome epoxygenase metabolites in cutaneous postocclusive hyperemia in humans. J. Appl. Physiol. Bethesda Md 1985 114, 245–251 (2013).
    1. Park Y. et al.. Role of EDHF in type 2 diabetes-induced endothelial dysfunction. Am. J. Physiol. Heart Circ. Physiol. 295, H1982–1988 (2008).
    1. Fitzgerald S. M., Kemp-Harper B. K., Tare M. & Parkington H. C. Role of endothelium-derived hyperpolarizing factor in endothelial dysfunction during diabetes. Clin. Exp. Pharmacol. Physiol. 32, 482–487 (2005).
    1. Coppey L. J., Gellett J. S. & Yorek M. A. Mediation of vascular relaxation in epineurial arterioles of the sciatic nerve: effect of diabetes in type 1 and type 2 diabetic rat models. Endothel. J. Endothel. Cell Res. 10, 89–94 (2003).
    1. Wilson S. B., Jennings P. E. & Belch J. J. Detection of microvascular impairment in type I diabetics by laser Doppler flowmetry. Clin. Physiol. Oxf. Engl. 12, 195–208 (1992).
    1. Kilo S., Berghoff M., Hilz M. & Freeman R. Neural and endothelial control of the microcirculation in diabetic peripheral neuropathy. Neurology 54, 1246–1252 (2000).
    1. Brooks B. A., McLennan S. V., Twigg S. M. & Yue D. K. Detection and characterisation of microcirculatory abnormalities in the skin of diabetic patients with microvascular complications. Diab. Vasc. Dis. Res. 5, 30–35 (2008).
    1. Mahé G., Durand S., Humeau-Heurtier A., Leftheriotis G. & Abraham P. Impact of experimental conditions on noncontact laser recordings in microvascular studies. Microcirc. N. Y. N 1994 19, 669–675 (2012).
    1. Abraham P. et al.. Effect of skin temperature on skin endothelial function assessment. Microvasc. Res. 88, 56–60 (2013).
    1. Morris S. J. & Shore A. C. Skin blood flow responses to the iontophoresis of acetylcholine and sodium nitroprusside in man: possible mechanisms. J. Physiol. 496 (Pt 2), 531–542 (1996).
    1. Koïtka A. et al.. Impaired pressure-induced vasodilation at the foot in young adults with type 1 diabetes. Diabetes 53, 721–725 (2004).
    1. Rossi M. et al.. Peripheral microvascular dysfunction as an independent predictor of atherosclerotic damage in type 1 diabetes patients: a preliminary study. Clin. Hemorheol. Microcirc. 54, 381–391 (2013).
    1. Ketel I. J. G. et al.. Microvascular function has no menstrual-cycle-dependent variation in healthy ovulatory women. Microcirc. N. Y. N 1994 16, 714–724 (2009).
    1. Report and recommendations of the San Antonio conference on diabetic neuropathy. Consensus statement. Diabetes 37, 1000–1004 (1988).
    1. Greene D. A., Sima A. A., Stevens M. J., Feldman E. L. & Lattimer S. A. Complications: neuropathy, pathogenetic considerations. Diabetes Care 15, 1902–1925 (1992).
    1. Aboyans V. et al.. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation 126, 2890–2909 (2012).
    1. Yvonne-Tee G. B., Rasool A. H. G., Halim A. S. & Rahman A. R. A. Reproducibility of different laser Doppler fluximetry parameters of postocclusive reactive hyperemia in human forearm skin. J. Pharmacol. Toxicol. Methods 52, 286–292 (2005).
    1. Vinik A. I. et al.. Dermal neurovascular dysfunction in type 2 diabetes. Diabetes Care 24, 1468–1475 (2001).
    1. Rousseau P. et al.. Increasing the ‘region of interest’ and ‘time of interest’, both reduce the variability of blood flow measurements using laser speckle contrast imaging. Microvasc. Res. 82, 88–91 (2011).
    1. Puissant C. et al.. Reproducibility of non-invasive assessment of skin endothelial function using laser Doppler flowmetry and laser speckle contrast imaging. PloS One 8, e61320 (2013).

Source: PubMed

3
Suscribir