A Non-Probiotic Fermented Soy Product Reduces Total and LDL Cholesterol: A Randomized Controlled Crossover Trial

Sarah M Jung, Ella H Haddad, Amandeep Kaur, Rawiwan Sirirat, Alice Y Kim, Keiji Oda, Sujatha Rajaram, Joan Sabaté, Sarah M Jung, Ella H Haddad, Amandeep Kaur, Rawiwan Sirirat, Alice Y Kim, Keiji Oda, Sujatha Rajaram, Joan Sabaté

Abstract

Traditional Asian fermented soy food products are associated with reduced cardiovascular disease risk in prospective studies, but few randomized controlled trials have been conducted in at-risk populations. The aim of this study was to investigate the effect of a commercial non-probiotic fermented soy product on blood lipids in adults with cardiovascular risk biomarkers. In a randomized, crossover, intervention study, 27 men and women (aged 29-75 y) exhibiting at least two risk factors, consumed two packets (12.5 g each) daily of a fermented powdered soy product, or an isoenergic control powder made from germinated brown rice for 12 weeks each. The consumption of the fermented soy product resulted in a significantly greater mean change from baseline (compared to the germinated rice, all p < 0.05) in total cholesterol of -0.23 mmol/L (CI: -0.40, -0.06) compared with 0.14 mmol/L (CI: -0.03, 0.31), respectively; and low density lipoprotein (LDL) cholesterol -0.18 mmol/L (CI: -0.32, -0.04) compared with 0.04 mmol/L (CI: -0.01, 0.018) respectively. This was accompanied by an increase in high density lipoprotein (HDL) cholesterol in the germinated rice group, a decrease in apolipoprotein B (ApoB) in the fermented soy group, and a between-treatment effect in apolipoprotein A1 (ApoA1); however, the ratio of the LDL:HDL and of Apo B:ApoA1 did not differ between the groups. The ratio of total cholesterol:LDL decreased in men in the fermented soy group (p < 0.001). Twenty-four-hour urine collection at the end of each treatment period resulted in an increased excretion expressed as a ratio in μmol/d between treatments of 10.93 (CI: 5.07, 23.54) for daidzein; 1.24 (CI: 1.14, 4.43) for genistein; and, 8.48 (CI: 4.28, 16.80) for glycitein, all p < 0.05. The fermented soy powder consumed by participants in this study without implementing other changes in their typical diets, decreased the total and LDL cholesterol, and may serve as a dietary strategy to manage blood lipids. The trial was registered at ClinicalTrials.gov as NCT03429920.

Keywords: LDL cholesterol; Q-Can natural; fermented soy powder; isoflavones; total cholesterol.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Study design of a randomized, controlled, crossover study in which participants with at least two risk factors for cardiovascular disease (CVD) consumed daily 2 packets of a powdered fermented soy product Q-Can Natural or 2 packets of a powdered germinated rice food, each dissolved in a liquid for a period of 12 weeks each, separated by a 2-week washout period. The packets were taken in a beverage of their choice—either water, low-fat milk or a plant-based milk—but participants had to be consistent in their choice of beverage. Anthropometric and blood pressure measurements and fasted blood were collected on study visits at baseline and weeks 11 and 12. A 24 h urine sample was collected at week 12.
Figure 2
Figure 2
Consolidated standards of reporting trials diagram indicating sample sizes at each stage during the study.
Figure 3
Figure 3
Estimated marginal means for the 24 h urine excretion of isoflavones (daidzein, genistein, glycitein) following the fermented soy and germinated rice intervention. Note: The y axis on a log10 scale.

References

    1. Heron M. Deaths: Leading Causes for 2017. Natl. Vital Stat. Rep. 2019;68:1–77.
    1. Zhang X., Shu X.O., Gao Y.T., Yang G., Li Q., Li H., Jin F., Zheng W. Soy food consumption is associated with lower risk of coronary heart disease in Chinese women. J. Nutr. 2003;133:2874–2878. doi: 10.1093/jn/133.9.2874.
    1. Kokubo Y., Iso H., Ishihara J., Okada K., Inoue M., Tsugane S. Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarctions in Japanese populations: The Japan Public Health Center-based (JPHC) study cohort I. Circulation. 2007;116:2553–2562. doi: 10.1161/CIRCULATIONAHA.106.683755.
    1. Yu D., Zhang X., Xiang Y.B., Yang G., Li H., Fazio S., Linton M., Cai Q., Zheng W., Gao Y.T., et al. Association of soy food intake with risk and biomarkers of coronary heart disease in Chinese men. Int. J. Cardiol. 2014;172:e285–e287. doi: 10.1016/j.ijcard.2013.12.200.
    1. Talaei M., Koh W.P., van Dam R.M., Yuan J.M., Pan A. Dietary soy intake is not associated with risk of cardiovascular disease mortality in Singapore Chinese adults. J. Nutr. 2014;144:921–928. doi: 10.3945/jn.114.190454.
    1. Jenkins D.J., Mirrahimi A., Srichaikul K., Berryman C.E., Wang L., Carleton A., Abdulnour S., Sievenpiper J.L., Kendall C.W., Kris-Etherton P.M. Soy protein reduces serum cholesterol by both intrinsic and food displacement mechanisms. J. Nutr. 2010;140:2302s–2311s. doi: 10.3945/jn.110.124958.
    1. Baum J.A., Teng H., Erdman J.W., Jr., Weigel R.M., Klein B.P., Persky V.W., Freels S., Surya P., Bakhit R.M., Ramos E., et al. Long-term intake of soy protein improves blood lipid profiles and increases mononuclear cell low-density-lipoprotein receptor messenger RNA in hypercholesterolemic, postmenopausal women. Am. J. Clin. Nutr. 1998;68:545–551. doi: 10.1093/ajcn/68.3.545.
    1. de Kleijn M.J., van der Schouw Y.T., Wilson P.W., Grobbee D.E., Jacques P.F. Dietary intake of phytoestrogens is associated with a favorable metabolic cardiovascular risk profile in postmenopausal U.S.women: The Framingham study. J. Nutr. 2002;132:276–282. doi: 10.1093/jn/132.2.276.
    1. Goodman-Gruen D., Kritz-Silverstein D. Usual dietary isoflavone intake is associated with cardiovascular disease risk factors in postmenopausal women. J. Nutr. 2001;131:1202–1206. doi: 10.1093/jn/131.4.1202.
    1. Crouse J.R., 3rd, Morgan T., Terry J.G., Ellis J., Vitolins M., Burke G.L. A randomized trial comparing the effect of casein with that of soy protein containing varying amounts of isoflavones on plasma concentrations of lipids and lipoproteins. Arch. Intern. Med. 1999;159:2070–2076. doi: 10.1001/archinte.159.17.2070.
    1. Jayagopal V., Albertazzi P., Kilpatrick E.S., Howarth E.M., Jennings P.E., Hepburn D.A., Atkin S.L. Beneficial effects of soy phytoestrogen intake in postmenopausal women with type 2 diabetes. Diabetes Care. 2002;25:1709–1714. doi: 10.2337/diacare.25.10.1709.
    1. Potter S.M. Soy protein and cardiovascular disease: The impact of bioactive components in soy. Nutr. Rev. 1998;56:231–235. doi: 10.1111/j.1753-4887.1998.tb01754.x.
    1. Wangen K.E., Duncan A.M., Xu X., Kurzer M.S. Soy isoflavones improve plasma lipids in normocholesterolemic and mildly hypercholesterolemic postmenopausal women. Am. J. Clin. Nutr. 2001;73:225–231. doi: 10.1093/ajcn/73.2.225.
    1. Gardner C.D., Newell K.A., Cherin R., Haskell W.L. The effect of soy protein with or without isoflavones relative to milk protein on plasma lipids in hypercholesterolemic postmenopausal women. Am. J. Clin. Nutr. 2001;73:728–735. doi: 10.1093/ajcn/73.4.728.
    1. Nestel P.J., Yamashita T., Sasahara T., Pomeroy S., Dart A., Komesaroff P., Owen A., Abbey M. Soy isoflavones improve systemic arterial compliance but not plasma lipids in menopausal and perimenopausal women. Arterioscler. Thromb. Vasc. Biol. 1997;17:3392–3398. doi: 10.1161/01.ATV.17.12.3392.
    1. Lichtenstein A.H., Jalbert S.M., Adlercreutz H., Goldin B.R., Rasmussen H., Schaefer E.J., Ausman L.M. Lipoprotein response to diets high in soy or animal protein with and without isoflavones in moderately hypercholesterolemic subjects. Arterioscler. Thromb. Vasc. Biol. 2002;22:1852–1858. doi: 10.1161/01.ATV.0000033513.18431.A1.
    1. Reinwald S., Akabas S.R., Weaver C.M. Whole versus the piecemeal approach to evaluating soy. J. Nutr. 2010;140:2335s–2343s. doi: 10.3945/jn.110.124925.
    1. Xu L., Du B., Xu B. A systematic, comparative study on the beneficial health components and antioxidant activities of commercially fermented soy products marketed in China. Food Chem. 2015;174:202–213. doi: 10.1016/j.foodchem.2014.11.014.
    1. Lim J.H., Jung E.S., Choi E.K., Jeong D.Y., Jo S.W., Jin J.H., Lee J.M., Park B.H., Chae S.W. Supplementation with Aspergillus oryzae-fermented kochujang lowers serum cholesterol in subjects with hyperlipidemia. Clin. Nutr. (Edinb. Scotl.) 2015;34:383–387. doi: 10.1016/j.clnu.2014.05.013.
    1. Arumugam S., Dioletis E., Paiva R., Fields M.R., Weiss T.R., Secor E.R., Ali A. Fermented Soy Beverage Q-CAN Plus Consumption Improves Serum Cholesterol and Cytokines. J. Med. Food. 2020;23:560–563. doi: 10.1089/jmf.2019.0116.
    1. Anderson J.W., Johnstone B.M., Cook-Newell M.E. Meta-analysis of the effects of soy protein intake on serum lipids. N. Engl. J. Med. 1995;333:276–282. doi: 10.1056/NEJM199508033330502.
    1. Tokede O.A., Onabanjo T.A., Yansane A., Gaziano J.M., Djoussé L. Soya products and serum lipids: A meta-analysis of randomised controlled trials. Br. J. Nutr. 2015;114:831–843. doi: 10.1017/S0007114515002603.
    1. Yamasaki K., Kayaba K., Ishikawa S. Soy and Soy Products Intake, All-Cause Mortality, and Cause-Specific Mortality in Japan: The Jichi Medical School Cohort Study. Asia Pac. J. Public Health. 2015;27:531–541. doi: 10.1177/1010539514539545.
    1. Nagata C., Takatsuka N., Shimizu H. Soy and fish oil intake and mortality in a Japanese community. Am. J. Epidemiol. 2002;156:824–831. doi: 10.1093/aje/kwf118.
    1. Ho S.Y., Schooling M., Hui L.L., McGhee S.M., Mak K.H., Lam T.H. Soy consumption and mortality in Hong Kong: Proxy-reported case-control study of all older adult deaths in 1998. Prev. Med. 2006;43:20–26. doi: 10.1016/j.ypmed.2006.03.007.
    1. Nagata C., Wada K., Tamura T., Konishi K., Goto Y., Koda S., Kawachi T., Tsuji M., Nakamura K. Dietary soy and natto intake and cardiovascular disease mortality in Japanese adults: The Takayama study. Am. J. Clin. Nutr. 2017;105:426–431. doi: 10.3945/ajcn.116.137281.
    1. Ma L., Liu G., Ding M., Zong G., Hu F.B., Willett W.C., Rimm E.B., Manson J.E., Sun Q. Isoflavone Intake and the Risk of Coronary Heart Disease in US Men and Women: Results From 3 Prospective Cohort Studies. Circulation. 2020;141:1127–1137. doi: 10.1161/CIRCULATIONAHA.119.041306.
    1. Sirtori C.R., Agradi E., Conti F., Mantero O., Gatti E. Soybean-protein diet in the treatment of type-II hyperlipoproteinaemia. Lancet (Lond. Engl.) 1977;1:275–277. doi: 10.1016/S0140-6736(77)91823-2.
    1. Carroll K.K., Giovannetti P.M., Huff M.W., Moase O., Roberts D.C., Wolfe B.M. Hypocholesterolemic effect of substituting soybean protein for animal protein in the diet of healthy young women. Am. J. Clin. Nutr. 1978;31:1312–1321. doi: 10.1093/ajcn/31.8.1312.
    1. Descovich G.C., Ceredi C., Gaddi A., Benassi M.S., Mannino G., Colombo L., Cattin L., Fontana G., Senin U., Mannarino E., et al. Multicentre study of soybean protein diet for outpatient hyper-cholesterolaemic patients. Lancet (Lond. Engl.) 1980;2:709–712. doi: 10.1016/S0140-6736(80)91933-9.
    1. Food labeling: Health claims. soy protein and coronary heart disease Food and Drug Administration, HHS. Final rule. Fed. Regist. 1999;64:57700–57733.
    1. Jenkins D.J.A., Blanco Mejia S., Chiavaroli L., Viguiliouk E., Li S.S., Kendall C.W.C., Vuksan V., Sievenpiper J.L. Cumulative Meta-Analysis of the Soy Effect Over Time. J. Am. Heart Assoc. 2019;8:e012458. doi: 10.1161/JAHA.119.012458.
    1. Blanco Mejia S., Messina M., Li S.S., Viguiliouk E., Chiavaroli L., Khan T.A., Srichaikul K., Mirrahimi A., Sievenpiper J.L., Kris-Etherton P., et al. A Meta-Analysis of 46 Studies Identified by the FDA Demonstrates that Soy Protein Decreases Circulating LDL and Total Cholesterol Concentrations in Adults. J. Nutr. 2019;149:968–981. doi: 10.1093/jn/nxz020.
    1. Uesugi T., Fukui Y., Yamori Y. Beneficial effects of soybean isoflavone supplementation on bone metabolism and serum lipids in postmenopausal japanese women: A four-week study. J. Am. Coll. Nutr. 2002;21:97–102. doi: 10.1080/07315724.2002.10719200.
    1. Taku K., Umegaki K., Sato Y., Taki Y., Endoh K., Watanabe S. Soy isoflavones lower serum total and LDL cholesterol in humans: A meta-analysis of 11 randomized controlled trials. Am. J. Clin. Nutr. 2007;85:1148–1156. doi: 10.1093/ajcn/85.4.1148.
    1. Taku K., Umegaki K., Ishimi Y., Watanabe S. Effects of extracted soy isoflavones alone on blood total and LDL cholesterol: Meta-analysis of randomized controlled trials. Ther. Clin. Risk Manag. 2008;4:1097–1103. doi: 10.2147/TCRM.S3262.
    1. Padhi E.M., Blewett H.J., Duncan A.M., Guzman R.P., Hawke A., Seetharaman K., Tsao R., Wolever T.M., Ramdath D.D. Whole Soy Flour Incorporated into a Muffin and Consumed at 2 Doses of Soy Protein Does Not Lower LDL Cholesterol in a Randomized, Double-Blind Controlled Trial of Hypercholesterolemic Adults. J. Nutr. 2015;145:2665–2674. doi: 10.3945/jn.115.219873.
    1. Jayachandran M., Xu B. An insight into the health benefits of fermented soy products. Food Chem. 2019;271:362–371. doi: 10.1016/j.foodchem.2018.07.158.
    1. Katagiri R., Sawada N., Goto A., Yamaji T., Iwasaki M., Noda M., Iso H., Tsugane S. Association of soy and fermented soy product intake with total and cause specific mortality: Prospective cohort study. BMJ (Clin. Res. Ed.) 2020;368:m34. doi: 10.1136/bmj.m34.
    1. Jeong S.J., Heo K., Park J.Y., Lee K.W., Park J.Y., Joo S.H., Kim J.H. Characterization of AprE176, a fibrinolytic enzyme from Bacillus subtilis HK176. J. Microbiol. Biotechnol. 2015;25:89–97. doi: 10.4014/jmb.1409.09087.
    1. Byun M.-S., Yu O.-K., Park T.-S. Korean traditional Chungkookjang improves body composition, lipid profiles and atherogenic indices in overweight/obese subjects: A double-blend, randomized, crossover, placebo-controlled clinical trial. Eur. J. Clin. Nutr. 2016;70:1116–1122. doi: 10.1038/ejcn.2016.77.
    1. Watanabe S., Yamaguchi M., Sobue T., Takahashi T., Miura T., Arai Y., Mazur W., Wähälä K., Adlercreutz H. Pharmacokinetics of soybean isoflavones in plasma, urine and feces of men after ingestion of 60 g baked soybean powder (kinako) J. Nutr. 1998;128:1710–1715. doi: 10.1093/jn/128.10.1710.
    1. Kano M., Takayanagi T., Harada K., Sawada S., Ishikawa F. Bioavailability of isoflavones after ingestion of soy beverages in healthy adults. J. Nutr. 2006;136:2291–2296. doi: 10.1093/jn/136.9.2291.
    1. Sapbamrer R., Visavarungroj N., Suttajit M. Effects of dietary traditional fermented soybean on reproductive hormones, lipids, and glucose among postmenopausal women in northern Thailand. Asia Pac. J. Clin. Nutr. 2013;22:222–228. doi: 10.6133/apjcn.2013.22.2.17.
    1. Cavallini D.C., Manzoni M.S., Bedani R., Roselino M.N., Celiberto L.S., Vendramini R.C., de Valdez G., Abdalla D.S., Pinto R.A., Rosetto D., et al. Probiotic Soy Product Supplemented with Isoflavones Improves the Lipid Profile of Moderately Hypercholesterolemic Men: A Randomized Controlled Trial. Nutrients. 2016;8:52. doi: 10.3390/nu8010052.
    1. Lovati M.R., Manzoni C., Gianazza E., Arnoldi A., Kurowska E., Carroll K.K., Sirtori C.R. Soy protein peptides regulate cholesterol homeostasis in Hep G2 cells. J. Nutr. 2000;130:2543–2549. doi: 10.1093/jn/130.10.2543.
    1. Ma D., Taku K., Zhang Y., Jia M., Wang Y., Wang P. Serum lipid-improving effect of soyabean β-conglycinin in hyperlipidaemic menopausal women. Br. J. Nutr. 2013;110:1680–1684. doi: 10.1017/S0007114513000986.
    1. Singh B.P., Vij S., Hati S. Functional significance of bioactive peptides derived from soybean. Peptides. 2014;54:171–179. doi: 10.1016/j.peptides.2014.01.022.
    1. Lammi C., Zanoni C., Arnoldi A., Vistoli G. Two Peptides from Soy β-Conglycinin Induce a Hypocholesterolemic Effect in HepG2 Cells by a Statin-Like Mechanism: Comparative in Vitro and in Silico Modeling Studies. J. Agric. Food Chem. 2015;63:7945–7951. doi: 10.1021/acs.jafc.5b03497.
    1. Siow R.C., Li F.Y., Rowlands D.J., de Winter P., Mann G.E. Cardiovascular targets for estrogens and phytoestrogens: Transcriptional regulation of nitric oxide synthase and antioxidant defense genes. Free Radic. Biol. Med. 2007;42:909–925. doi: 10.1016/j.freeradbiomed.2007.01.004.
    1. Menazza S., Murphy E. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System. Circ. Res. 2016;118:994–1007. doi: 10.1161/CIRCRESAHA.115.305376.
    1. Kawakami Y., Tsurugasaki W., Nakamura S., Osada K. Comparison of regulative functions between dietary soy isoflavones aglycone and glucoside on lipid metabolism in rats fed cholesterol. J. Nutr. Biochem. 2005;16:205–212. doi: 10.1016/j.jnutbio.2004.11.005.
    1. Zhang Y.B., Chen W.H., Guo J.J., Fu Z.H., Yi C., Zhang M., Na X.L. Soy isoflavone supplementation could reduce body weight and improve glucose metabolism in non-Asian postmenopausal women--a meta-analysis. Nutrition (Burbank Los Angeles County Calif.) 2013;29:8–14. doi: 10.1016/j.nut.2012.03.019.
    1. Liu Z.M., Chen Y.M., Ho S.C., Ho Y.P., Woo J. Effects of soy protein and isoflavones on glycemic control and insulin sensitivity: A 6-mo double-blind, randomized, placebo-controlled trial in postmenopausal Chinese women with prediabetes or untreated early diabetes. Am. J. Clin. Nutr. 2010;91:1394–1401. doi: 10.3945/ajcn.2009.28813.
    1. Ye Y.B., Chen A.L., Lu W., Zhuo S.Y., Liu J., Guan J.H., Deng W.P., Fang S., Li Y.B., Chen Y.M. Daidzein and genistein fail to improve glycemic control and insulin sensitivity in Chinese women with impaired glucose regulation: A double-blind, randomized, placebo-controlled trial. Mol. Nutr. Food Res. 2015;59:240–249. doi: 10.1002/mnfr.201400390.
    1. Sarkar M., Hossain S., Hussain J., Hasan M., Bhowmick S., Basunia M.A., Hashimoto M. Cholesterol Lowering and Antioxidative Effect of Pregerminated Brown Rice in Hypercholesterolemic Rats. J. Nutr. Sci. Vitaminol. 2019;65:S93–s99. doi: 10.3177/jnsv.65.S93.
    1. Mai T.T., Trang T.T., Hai T.T. Effectiveness of germinated brown rice on metabolic syndrome: A randomized control trial in Vietnam. AIMS Public Health. 2020;7:33–43. doi: 10.3934/publichealth.2020005.
    1. Shahar D.R., Froom P., Harari G., Yerushalmi N., Lubin F., Kristal-Boneh E. Changes in dietary intake account for seasonal changes in cardiovascular disease risk factors. Eur. J. Clin. Nutr. 1999;53:395–400. doi: 10.1038/sj.ejcn.1600761.
    1. Stussman B.J., Black L.I., Barnes P.M., Clarke T.C., Nahin R.L. Wellness-Related Use of Common Complementary Health Approaches Among Adults: United States, 2012. National Center for Health Statistics; Hyattsville, MD, USA: 2015. pp. 1–12. National Health Statistics Reports.

Source: PubMed

3
Suscribir