Evaluation of a point-of-care diagnostic to identify glucose-6-phosphate dehydrogenase deficiency in Brazil

Stephanie Zobrist, Marcelo Brito, Eduardo Garbin, Wuelton M Monteiro, Suellen Clementino Freitas, Marcela Macedo, Aline Soares Moura, Nicole Advani, Maria Kahn, Sampa Pal, Emily Gerth-Guyette, Pooja Bansil, Gonzalo J Domingo, Dhelio Pereira, Marcus Vg Lacerda, Stephanie Zobrist, Marcelo Brito, Eduardo Garbin, Wuelton M Monteiro, Suellen Clementino Freitas, Marcela Macedo, Aline Soares Moura, Nicole Advani, Maria Kahn, Sampa Pal, Emily Gerth-Guyette, Pooja Bansil, Gonzalo J Domingo, Dhelio Pereira, Marcus Vg Lacerda

Abstract

Background: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzyme deficiency, prevalent in many malaria-endemic countries. G6PD-deficient individuals are susceptible to hemolysis during oxidative stress, which can occur from exposure to certain medications, including 8-aminoquinolines used to treat Plasmodium vivax malaria. Accordingly, access to point-of-care (POC) G6PD testing in Brazil is critical for safe treatment of P. vivax malaria.

Methodology/principal findings: This study evaluated the performance of the semi-quantitative, POC STANDARD G6PD Test (SD Biosensor, Republic of Korea). Participants were recruited at clinics and through an enriched sample in Manaus and Porto Velho, Brazil. G6PD and hemoglobin measurements were obtained from capillary samples at the POC using the STANDARD and HemoCue 201+ (HemoCue AB, Sweden) tests. A thick blood slide was prepared for malaria microscopy. At the laboratories, the STANDARD and HemoCue tests were repeated on venous samples and a quantitative spectrophotometric G6PD reference assay was performed (Pointe Scientific, Canton, MI). G6PD was also assessed by fluorescent spot test. In Manaus, a complete blood count was performed. Samples were analyzed from 1,736 participants. In comparison to spectrophotometry, the STANDARD G6PD Test performed equivalently in determining G6PD status in venous and capillary specimens under varied operating temperatures. Using the manufacturer-recommended reference value thresholds, the test's sensitivity at the <30% threshold on both specimen types was 100% (95% confidence interval [CI] venous 93.6%-100.0%; capillary 93.8%-100.0%). Specificity was 98.6% on venous specimens (95% CI 97.9%-99.1%) and 97.8% on capillary (95% CI 97.0%-98.5%). At the 70% threshold, the test's sensitivity was 96.9% on venous specimens (95% CI 83.8%-99.9%) and 94.3% on capillary (95% CI 80.8%-99.3%). Specificity was 96.5% (95% CI 95.0%-97.6%) and 92.3% (95% CI 90.3%-94.0%) on venous and capillary specimens, respectively.

Conclusion/significance: The STANDARD G6PD Test is a promising tool to aid in POC detection of G6PD deficiency in Brazil.

Trial registration: This study was registered with ClinicalTrials.gov (identifier: NCT04033640).

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Histogram showing the distribution of…
Fig 1. Histogram showing the distribution of G6PD activities in the study population.
The frequency is plotted against the normalized reference assay G6PD activity in 10% increments for A) males, and B) females. The 30%, 70%, and 80% activity limits are indicated on each plot. G6PD, glucose-6-phosphate dehydrogenase.
Fig 2
Fig 2
ROC curves at 30% and 70% G6PD activity thresholds on A) venous specimens and B) capillary specimens. ROC, receiver operating curve.
Fig 3. Regression analysis of STANDARD G6PD…
Fig 3. Regression analysis of STANDARD G6PD Test’s G6PD activity on A) venous specimens and B) capillary specimens, compared to normalized spectrophotometric reference test on venous specimens.
Fig 4
Fig 4
Regression analysis of STANDARD G6PD Test total hemoglobin measurement on A) capillary specimens compared to complete blood count, B) venous specimens compared to complete blood count (Manaus only). CBC, complete blood count; Hb, hemoglobin.

References

    1. Chu CS, Bancone G, Nosten F, White NJ, Luzzatto L. Primaquine-induced haemolysis in females heterozygous for G6PD deficiency. Malar J. 2018;17: 101. doi: 10.1186/s12936-018-2248-y
    1. Luzzatto L, Ally M, Notaro R. Glucose-6-phosphate dehydrogenase deficiency. Blood. 2020. doi: 10.1182/blood.2019000944
    1. Howes RE, Piel FB, Patil AP, Nyangiri OA, Gething PW, Dewi M, et al.. G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: a geostatistical model-based map. PLoS Med. 2012;9(11): e1001339. doi: 10.1371/journal.pmed.1001339
    1. Howes RE, Dewi M, Piel FB, Monteiro WM, Battle KE, Messina JP, et al.. Spatial distribution of G6PD deficiency variants across malaria-endemic regions. Malar J. 2013;12: 418. doi: 10.1186/1475-2875-12-418
    1. Monteiro WM, Val FFA, Siqueira AM, Franca GP, Sampaio VS, Melo GC, et al.. G6PD deficiency in Latin America: systematic review on prevalence and variants. Mem Inst Oswaldo Cruz. 2014;109(5): 553–568. doi: 10.1590/0074-0276140123
    1. Cappellini MD. Glucose-6-phosphate dehydrogenase deficiency. Lancet. 2008;371(9606): 64–74. doi: 10.1016/S0140-6736(08)60073-2
    1. Domingo GJ, Advani N, Satyagraha AW, Sibley CH, Rowley E, Kalnoky M, et al.. Addressing the gender-knowledge gap in glucose-phosphate dehydrogenase deficiency: challenges and opportunities. Int Health. 2019;11(1): 7–14. doi: 10.1093/inthealth/ihy060
    1. World Health Organization (WHO). Technical Specifications Series for Submission to WHO Prequalification—Diagnostic Assessment: In Vitro Diagnostics Medical Devices to Identify Glucose-6-Phosphate Dehydrogenase (G6PD) Activity. 2016. Available from: .
    1. Howes RE, Battle KE, Satyagraha AW, Baird JK, Hay SI. G6PD deficiency: global distribution, genetic variants, and primaquine therapy. Adv Parasitol. 2013;81: 133–201. doi: 10.1016/B978-0-12-407826-0.00004-7
    1. Baird JK. Point-of-care G6PD diagnostics for Plasmodium vivax malaria is a clinical and public health urgency. BMC Med. 2015;13: 296. doi: 10.1186/s12916-015-0531-0
    1. World Health Organization (WHO). Testing for G6PD deficiency for safe use of primaquine in radical cure of P. vivax and P. ovale malaria. WHO; Geneva: 2016. .
    1. Ley B, Luter N, Espino FE, Devine A, Kalnoky M, Lubell Y, et al.. The challenges of introducing routine G6PD testing into radical cure: a workshop report. Malar J. 2015;14: 377. doi: 10.1186/s12936-015-0896-8
    1. Recht J, Ashley A, White NJ. Use of primaquine and glucose-6-phosphate dehydrogenase deficiency testing: divergent policies and practices in malaria endemic countries. PLoS Negl Trop Dis. 2018;12(4): e0006230. doi: 10.1371/journal.pntd.0006230
    1. Lacerda MVG, Llanos-Cuentas A, Krudsood S, Lon C, Saunders DL, Mohammed R, et al.. Single-dose tafenoquine to prevent relapse of Plasmodium vivax malaria. N Engl J Med. 2019;380(3): 215–228. doi: 10.1056/NEJMoa1710775
    1. Commons RJ, McCarthy JS, Price RN. Tafenoquine for the radical cure and prevention of malaria: the importance of testing for G6PD deficiency. Med J Aust. 2020;212(4): 152–153.e1. doi: 10.5694/mja2.50474
    1. Roper D, Layton M, Rees D, Lambert C, Vulliamy T, De la Salle B, et al.. Laboratory diagnosis of G6PD deficiency. a British Society for Haemotology guideline. Br J Haematol. 2020;189(1): 24–38. doi: 10.1111/bjh.16366
    1. Pfeffer DA, Ley B, Howes RE, Adu P, Alam MS, Bansil P, et al.. Quantification of glucose-6-phosphate dehydrogenase activity by spectrophotometry: a systematic review and meta-analysis. PLoS Med. 2020;17(5): e1003084. doi: 10.1371/journal.pmed.1003084
    1. Anderle A, Bancone G, Domingo GJ, Gerth-Guyette E, Pal S, Satyagraha AW. Point-of-care testing for G6PD deficiency: opportunities for screening. Int J Neonatal Screen. 2018;4(4): 34. doi: 10.3390/ijns4040034
    1. Ley B, Satyagraha AW, Rahmat H, von Fricken ME, Douglas NM, Pfeffer DA, et al.. Performance of the Access Bio/CareStart rapid diagnostic test for the detection of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. PLoS Med. 2019;16(12): e1002992. doi: 10.1371/journal.pmed.1002992
    1. Bancone G, Gornsawun G, Chu Cs, Porn P, Pal S, Bansil P, et al.. Validation of the quantitative point-of-care CareStart biosensor for assessment of G6PD activity in venous blood. PLoS One. 2018;13(5): e0196716. doi: 10.1371/journal.pone.0196716
    1. Pal S, Bansil P, Bancone G, Hrutkay S, Kahn M, Gornsawun G, et al.. Evaluation of a novel quantitative test for glucose-6-phosphate dehydrogenase deficiency: bringing quantitative testing for glucose-6-phosphate dehydrogenase deficiency closer to the patient. Am J Trop Med Hyg. 2018;100(1): 213–221. doi: 10.4269/ajtmh.18-0612.
    1. Alam MS, Kibria MG, Jahan N, Thriemer K, Hossain MS, Douglas NM, et al.. Field evaluation of quantitative point of care diagnostics to measure glucose-6-phosphate dehydrogenase activity. PLoS One. 2018;13(11): e0206331. doi: 10.1371/journal.pone.0206331
    1. Oliveira-Ferreira J, Lacerda MVG, Brasil P, Ladislau JLB, Tauil PL, Daniel-Ribeiro CT. Malaria in Brazil: an overview. Malar J. 2010;9: 115. doi: 10.1186/1475-2875-9-115
    1. Siqueira AM, Mesones-Lapouble O, Marchesini P, Sampaio VdS, Brasil P, Tauil PL, et al.. Plasmodium vivax landscape in Brazil: scenarios and challenges. Am J Trop Med Hyg. 2016;95(6 Suppl): 87–96. doi: 10.4269/ajtmh.16-0204
    1. Brito MA, Peixoto HM, de Almeida ACG, de Oliveira MRF, Romero GAS, Moura-Neto JP, et al.. Validation of the rapid Carestart G6PD among malaria vivax-infected subjects in the Brazilian Amazon. Rev Soc Bras Med Trop. 2016;49(4): 446–455. doi: 10.1590/0037-8682-0134-2016
    1. Peixoto HM, Brito MA, Romero GA, Monteiro WM, de Lacerda MVG, de Oliveira MRF. G6PD deficiency in male individuals infected by Plasmodium vivax malaria in the Brazilian Amazon: a cost study. Malar J. 2015;14: 126. doi: 10.1186/s12936-015-0647-x
    1. Ministerio da Saude. Guia de tratamento da malaria no Brazil. Versao preliminar. .
    1. Instituto Brasileiro de Geografia e Estatistica (IBGE). Population estimates. 2019. Available at .
    1. Sampaio VS, Siqueira AM, Alecrim MDGC, Mourão MPG, Marchesini PB, Albuquerque BC, et al.. Malaria in the state of Amazonas: a typical Brazilian tropical disease influenced by waves of economic development. Rev Soc Bras Med Trop. 2015;48(Suppl 1): 4–11. doi: 10.1590/0037-8682-0275-2014
    1. Angelo JR, Katsuragawa TH, Sabroza PC, de Carvalho LAS, Silva LHPd, Nobre CA. The role of spatial mobility in malaria transmission in the Brazilian Amazon: the case of Porto Velho municipality, Rondônia, Brazil (2010–2012). PLoS One. 2017;12(2): e0172330. doi: 10.1371/journal.pone.0172330
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform X. 2009;42(2): 377–381. doi: 10.1016/j.jbi.2008.08.010
    1. Domingo G, Satyagraha AW, Anvikar A, Baird K, Bancone G, Bansil P, et al.. G6PD testing in support of treatment and elimination of malaria: recommendations for evaluation of G6PD tests. Malar J. 2013;12: 391. doi: 10.1186/1475-2875-12-391
    1. Ley B, Bancone G, von Seidlein L, Thriemer K, Richards JS, Domingo GJ, et al.. Methods for the field evaluation of quantitative G6PD diagnostics: a review. Malar J. 2017;16: 361. doi: 10.1186/s12936-017-2017-3
    1. Calvaresi EC, Genzen JR. Evaluating percentage-based reporting of glucose-6-phosphate dehydrogenase (G6PD) enzymatic activity: assessment of patient eligibility for malaria prevention and treatment with tafenoquine. Am J Clin Pathol. 2020;154(2): 248–254. doi: 10.1093/ajcp/aqaa040
    1. World Health Organization (WHO). Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System. Geneva: WHO; 2011. .
    1. Chu CS, Bancone G, Kelley M, et al.. Optimizing G6PD testing for Plasmodium vivax case management: why sex, counseling, and community engagement matter. Wellcome Open Research. 2020;5(21). doi: 10.12688/wellcomeopenres.15700.1
    1. Milligan R, Daher A, Villanueva G, Bergman H, Graves PM. Primaquine alternative dosing schedules for preventing malaria relapse in people with Plasmodium vivax. Cochrane Database Syst Rev. 2020;8: CD012656. doi: 10.1002/14651858.CD012656.pub3
    1. Taylor WRJ, Thriemer K, von Seidlein L, Yuentrakul P, Assawariyathipat T, Assefa A, et al.. Short-course primaquine for the radical cure of Plasmodium vivax malaria: a multicentre, randomised, placebo-controlled non-inferiority trial. Lancet. 2019;394(10202): 929–938. doi: 10.1016/S0140-6736(19)31285-1
    1. Llanos-Cuentas A, Lacerda MVG, Hien TT, Vélez ID, Namaik-Iarp C, Chu CS, et al.. Tafenoquine versus primaquine to prevent relapse of Plasmodium vivax malaria. N Engl J Med. 2019;380(3): 229–241. doi: 10.1056/NEJMoa1802537
    1. World Health Organization (WHO). Guidelines for the treatment of malaria. 3rd edition. Geneva: WHO; 2015. .

Source: PubMed

3
Suscribir