Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities

Peng Du, Stefan Calder, Timothy R Angeli, Shameer Sathar, Niranchan Paskaranandavadivel, Gregory O'Grady, Leo K Cheng, Peng Du, Stefan Calder, Timothy R Angeli, Shameer Sathar, Niranchan Paskaranandavadivel, Gregory O'Grady, Leo K Cheng

Abstract

Gastrointestinal (GI) motility is regulated in part by electrophysiological events called slow waves, which are generated by the interstitial cells of Cajal (ICC). Slow waves propagate by a process of "entrainment," which occurs over a decreasing gradient of intrinsic frequencies in the antegrade direction across much of the GI tract. Abnormal initiation and conduction of slow waves have been demonstrated in, and linked to, a number of GI motility disorders. A range of mathematical models have been developed to study abnormal slow waves and applied to propose novel methods for non-invasive detection and therapy. This review provides a general outline of GI slow wave abnormalities and their recent classification using multi-electrode (high-resolution) mapping methods, with a particular emphasis on the spatial patterns of these abnormal activities. The recently-developed mathematical models are introduced in order of their biophysical scale from cellular to whole-organ levels. The modeling techniques, main findings from the simulations, and potential future directions arising from notable studies are discussed.

Keywords: Electrophysiology; GI; arrhythmias; multi-scale modeling; slow wave.

Figures

Figure 1
Figure 1
Examples of high-resolution mapping of in-vivo gastric slow waves. (i) An array of 16 × 16 electrodes (brown patch) were placed on the serosal surface of the stomach. (ii) Activation times of slow waves were identified and reconstructed into activation maps with red representing early activation and blue presenting late activation. (iii) Example slow wave recordings from six electrodes are shown in each case. (A) Normal antegrade propagation pattern of gastric slow wave activation (Angeli et al., 2015). (B) An ectopic activation (star) in the proximal stomach. (C) Simultaneous ectopic activation, conduction block and collision of slow waves in the gastric corpus. Adapted from (Angeli et al., 2015).
Figure 2
Figure 2
A finite state machine cell model of gastric interstitial cells of Cajal. (A) The model consists of an active state and a passive state. ST indicates if time has passed the startTime, which is set as a parameter and which determines initial excitation when there is no threshold voltage. AT indicates if the non-refractory period has been passed and signals transition from passive state to active state. DC identifies if the change in concentration of intracellular Ca2+ has returned to quiescent state. VP variable is set to true if there is a voltage which is greater than the threshold of the cell. (B) Simulated gastric slow waves and the associated intracellular calcium. Adapted from (Sathar et al., 2014).
Figure 3
Figure 3
Mathematical models of intestinal slow wave propagation. (A) Entrained slow waves over an intrinsic frequency gradient of 17–14.6 cpm (entrained to 17 cpm) were simulated over a 2D model. (B) A functional rotor was invoked in the middle of the 2D model using a 30 s long prolonged temporary conduction block. The rotor could be sustained with entrained waves propagating in both antegrade and retrograde directions, with an elevated frequency of 21 cpm. Adapted from (Du et al., 2017).
Figure 4
Figure 4
Simulation of whole-organ gastric slow waves. (A) Gastric slow waves originate from a pacemaker region along the greater curvature in the proximal stomach. Simultaneous and multiple wavefronts occur in the stomach, with each propagating wavefront taking up to 60 s to reach to the terminal antrum. (B) The existence of resting membrane potential gradient in the stomach plays a key role to the recovery component in the extracellular signals, when calculated as a difference between membrane potential (Vm) and a spatially invariant term (Vr). Adapted from (Paskaranandavadivel et al., 2017).
Figure 5
Figure 5
Whole-organ gastric slow wave dysrhythmias and electrogastrography (EGG) simulations (Calder et al., 2016). (A) Four instance of gastric slow wave activation (normal, re-entry, conduction block in the antrum and ectopic pacemaker in the proximal stomach). (B) Corresponding EGG simulations are calculated using a forward approach over an anatomically realistic torso, with the EGG potentials normalized (U).

References

    1. Angeli T. R., Cheng L. K., Du P., Wang T. H., Bernard C. E., Vannucchi M. G., et al. . (2015). Loss of interstitial cells of cajal and patterns of gastric dysrhythmia in patients with chronic unexplained nausea and vomiting. Gastroenterology 149, 56-66 e5. 10.1053/j.gastro.2015.04.003
    1. Angeli T. R., Du P., Paskaranandavadivel N., Janssen P. W., Beyder A., Lentle R. G., et al. . (2013a). The bioelectrical basis and validity of gastrointestinal extracellular slow wave recordings. J. Physiol. 591, 4567–479. 10.1113/jphysiol.2013.254292
    1. Angeli T. R., O'Grady G., Du P., Paskaranandavadivel N., Pullan A. J., Bissett I. P., et al. . (2013c). Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine. Neurogastroenterol. Motil. 25, e304–e314. 10.1111/nmo.12085
    1. Angeli T. R., O'Grady G., Paskaranandavadivel N., Erickson J. C., Du P., Pullan A. J., et al. . (2013b). Experimental and automated analysis techniques for high resolution electrical mapping of small intestine slow wave activity. J. Neurogastroenterol. Motil. 19, 179–191. 10.5056/jnm.2013.19.2.179
    1. Atia J., McCloskey C., Shmygol A. S., Rand D. A. H. A., van den Berg Blanks A. M. (2016). Reconstruction of cell surface densities of ion pumps, exchangers, and channels from mRNA expression, conductance kinetics, whole-cell calcium, and current-clamp voltage recordings, with an application to human uterine smooth muscle cells. PLoS Comput. Biol. 12:e1004828. 10.1371/journal.pcbi.1004828
    1. Bennett M. R., Farnell L., Gibson W. G. (2005). A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks. Biophys. J. 89, 2235–2250. 10.1529/biophysj.105.062968
    1. Berry R., Cheng L. K., Du P., Paskaranandavadivel N., Angeli T. R., Mayne T., et al. . (2017). Patterns of abnormal gastric pacemaking after sleeve gastrectomy defined by laparoscopic high-resolution electrical mapping. Obes. Surg. 27, 1929–1937. 10.1007/s11695-017-2597-6
    1. Berry R., Miyagawa T., Paskaranandavadivel N., Du P., Angeli T. R., Trew M. L., et al. . (2016). Functional physiology of the human terminal antrum defined by high-resolution electrical mapping and computational modeling. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G895–G902. 10.1152/ajpgi.00255.2016
    1. Beyder A., Farrugia G. (2016). Ion channelopathies in functional GI disorders. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G581–G586. 10.1152/ajpgi.00237.2016
    1. Beyder A., Rae J. L., Bernard C., Strege P. R., Sachs F., Farrugia G. (2010). Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J. Physiol. 588, 4969–4985. 10.1113/jphysiol.2010.199034
    1. Bortolotti M. (1998). Electrogastrography: a seductive promise, only partially kept. Am. J. Gastroenterol. 93, 1791–1794. 10.1111/j.1572-0241.1998.01791.x
    1. Bradley C., Bowery A., Britten R., Budelmann V., Camara O., Christie R., et al. . (2011). OpenCMISS: a multi-physics & multi-scale computational infrastructure for the VPH/Physiome project. Prog. Biophys. Mol. Biol. 107, 32–47. 10.1016/j.pbiomolbio.2011.06.015
    1. Bradshaw L. A., Cheng L. K., Chung E., Obioha C. B., Erickson J. C., Gorman B. L., et al. . (2016a). Diabetic gastroparesis alters the biomagnetic signature of the gastric slow wave. Neurogastroenterol. Motil. 28, 837–848. 10.1111/nmo.12780
    1. Bradshaw L. A., Kim J. H., Somarajan S., Richards W. O., Cheng L. K. (2016b). Characterization of electrophysiological propagation by multichannel sensors. IEEE Trans. Biomed. Eng. 63, 1751–1759. 10.1109/TBME.2015.2502065
    1. Bradshaw L. A., Sims J. A., Richards W. O. (2007). Noninvasive assessment of the effects of glucagon on the gastric slow wave. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G1029–G1038. 10.1152/ajpgi.00054.2007
    1. Buist M. L., Poh Y. C. (2010). An extended bidomain framework incorporating multiple cell types. Biophys. J. 99, 13–18. 10.1016/j.bpj.2010.03.054
    1. Bull S. H., O'Grady G., Cheng L. K., Pullan A. J. (2011). A framework for the online analysis of multi-electrode gastric slow wave recordings. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 1741–1744. 10.1109/IEMBS.2011.6090498
    1. Calder S., O'Grady G., Cheng L., Du P. (2016). A theoretical analysis of electrogastrography (EGG) signatures associated with gastric dysrhythmias. IEEE Trans. Biomed. Eng. 64, 1592–1601. 10.1109/TBME.2016.2614277
    1. Chaouiya C., Berenguier D., Keating S. M., Naldi A., van Iersel M. P., Rodriguez N., et al. . (2013). SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools. BMC Syst. Biol. 7:135. 10.1186/1752-0509-7-135
    1. Chen C. L., Lin H. H., Huang L. C., Huang S. C., Liu T. T. (2004). Electrogastrography differentiates reflux disease with or without dyspeptic symptoms. Dig. Dis. Sci. 49, 715–719. 10.1023/B:DDAS.0000030079.20501.62
    1. Cheng L. K., Du P., O'Grady G. (2013). Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside. Physiology 28, 310–317. 10.1152/physiol.00022.2013
    1. Christie G. R., Nielsen P. M., Blackett S. A., Bradley C. P., Hunter P. J. (2009). FieldML: concepts and implementation. Philos. Trans. A Math. Phys. Eng. Sci. 367, 1869–1884. 10.1098/rsta.2009.0025
    1. Code C. F., Marlett J. A. (1974). Canine tachygastria. Mayo Clin. Proc. 49, 325–332.
    1. Coleski R., Hasler W. L. (2009). Coupling and propagation of normal and dysrhythmic gastric slow waves during acute hyperglycaemia in healthy humans. Neurogastroenterol Motil 21, 492-9, e1–2. 10.1111/j.1365-2982.2008.01235.x
    1. Corrias A., Buist M. L. (2007). A quantitative model of gastric smooth muscle cellular activation. Ann. Biomed. Eng. 35, 1595–1607. 10.1007/s10439-007-9324-8
    1. Corrias A., Buist M. L. (2008). Quantitative cellular description of gastric slow wave activity. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G989–G995. 10.1152/ajpgi.00528.2007
    1. Corrias A., Pathmanathan P., Gavaghan D. J., Buist M. L. (2012). Modelling tissue electrophysiology with multiple cell types: applications of the extended bidomain framework. Integr. Biol. 4, 192–201. 10.1039/c2ib00100d
    1. Debinski H. S., Ahmed S., Milla P. J., Kamm M. A. (1996). Electrogastrography in chronic intestinal pseudoobstruction. Dig. Dis. Sci. 41, 1292–1297. 10.1007/BF02088549
    1. Diamant N. E., Bortoff A. (1969). Nature of the intestinal slow-wave frequency gradient. Am. J. Physiol. 216, 301–307.
    1. Du P., Hameed A., Angeli T. R., Lahr C., Abell T. L., Cheng L. K., et al. . (2015a). The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling. Neurogastroenterol. Motil. 27, 1409–1422. 10.1111/nmo.12637
    1. Du P., O'Grady G., Cheng L. K. (2017). A theoretical analysis of anatomical and functional intestinal slow wave re-entry. J. Theor. Biol. 425, 72–79. 10.1016/j.jtbi.2017.04.021
    1. Du P., O'Grady G., Cheng L. K., Pullan A. J. (2010a). A multiscale model of the electrophysiological basis of the human electrogastrogram. Biophys. J. 99, 2784–2792. 10.1016/j.bpj.2010.08.067
    1. Du P., O'Grady G., Egbuji J. U., Lammers W. J., Budgett D., Nielsen P., et al. . (2009a). High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann. Biomed. Eng. 37, 839–846. 10.1007/s10439-009-9654-9
    1. Du P., O'Grady G., Gao J., Sathar S., Cheng L. K. (2013). Toward the virtual stomach: progress in multiscale modeling of gastric electrophysiology and motility. Wiley Interdiscip. Rev. Syst. Biol. Med. 5, 481–493. 10.1002/wsbm.1218
    1. Du P., O'Grady G., Gibbons S. J., Yassi R., Lees-Green R., Farrugia G., et al. . (2010b). Tissue-specific mathematical models of slow wave entrainment in wild-type and 5-HT(2B) knockout mice with altered interstitial cells of Cajal networks. Biophys. J. 98, 1772–1781. 10.1016/j.bpj.2010.01.009
    1. Du P., O'Grady G., Paskaranandavadivel N., Tang S. J., Abell T., Cheng L. K. (2016a). Simultaneous anterior and posterior serosal mapping of gastric slow-wave dysrhythmias induced by vasopressin. Exp. Physiol. 101, 1206–1217. 10.1113/EP085697
    1. Du P., O'Grady G., Windsor J. A., Cheng L. K., Pullan A. J. (2009b). A tissue framework for simulating the effects of gastric electrical stimulation and in vivo validation. IEEE Trans. Biomed. Eng. 56, 2755–2761. 10.1109/TBME.2009.2027690
    1. Du P., Paskaranandavadivel N., Angeli T. R., Cheng L. K., O'Grady G. (2016b). The virtual intestine: in silico modeling of small intestinal electrophysiology and motility and the applications. Wiley Interdiscip. Rev. Syst. Biol. Med. 8, 69–85. 10.1002/wsbm.1324
    1. Du P., Paskaranandavadivel N., O'Grady G., Tang S. J., Cheng L. K. (2015b). A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry. Math. Med. Biol. 32, 405–423. 10.1093/imammb/dqu023
    1. Du P., Poh Y. C., Lim J. L., Gajendiran V., O'Grady G., Buist M. L., et al. . (2011). A preliminary model of gastrointestinal electromechanical coupling. IEEE Trans. Biomed. Eng. 58, 3491–3495. 10.1109/TBME.2011.2166155
    1. Egbuji J. U. G., O'grady Du P., Cheng L. K., Lammers W. J., Windsor J. A., et al. . (2010). Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping. Neurogastroenterol. Motil. 22, e292–300. 10.1111/j.1365-2982.2010.01538.x
    1. Familoni B. O., Kingma Y. J., Bowes K. L. (1987). Study of transcutaneous and intraluminal measurement of gastric electrical activity in humans. Med. Biol. Eng. Comput. 25, 397–402. 10.1007/BF02443360
    1. Farrugia G., Lei S., Lin X., Miller S. M., Nath K. A., Ferris C. D., et al. . (2003). A major role for carbon monoxide as an endogenous hyperpolarizing factor in the gastrointestinal tract. Proc. Natl. Acad. Sci. U.S.A. 100, 8567–8570. 10.1073/pnas.1431233100
    1. Fullard L., Lammers W., Wake G. C., Ferrua M. J. (2014). Propagating longitudinal contractions in the ileum of the rabbit–efficiency of advective mixing. Food Funct. 5, 2731–2742. 10.1039/C4FO00487F
    1. Gao J., Sathar S., O'Grady G., Archer R., Cheng L. K. (2015). A Stochastic algorithm for generating realistic virtual interstitial cell of Cajal networks. IEEE Trans. Biomed. Eng. 62, 2070–2078. 10.1109/TBME.2015.2412533
    1. Gharibans A. A., Kim S., Kunkel D., Coleman T. P. (2016). High-resolution electrogastrogram: a novel, noninvasive method for determining gastric slow-wave direction and speed. IEEE Trans. Biomed. Eng. 64, 807–815. 10.1109/TBME.2016.2579310
    1. Gizzi A., Cherubini C., Migliori S., Alloni R., Portuesi R., Filippi S. (2010). On the electrical intestine turbulence induced by temperature changes. Phys. Biol. 7:16011. 10.1088/1478-3975/7/1/016011
    1. Gonlachanvit S., Chen Y. H., Hasler W. L., Sun W. M., Owyang C. (2003). Ginger reduces hyperglycemia-evoked gastric dysrhythmias in healthy humans: possible role of endogenous prostaglandins. J. Pharmacol. Exp. Ther. 307, 1098–1103. 10.1124/jpet.103.053421
    1. Hasler W. L., Soudah H. C., Dulai G., Owyang C. (1995). Mediation of hyperglycemia-evoked gastric slow-wave dysrhythmias by endogenous prostaglandins. Gastroenterology 108, 727–736. 10.1016/0016-5085(95)90445-X
    1. Huizinga J. D., Chen J. H., Zhu Y. F., Pawelka A., McGinn R. J., Bardakjian B. L., et al. . (2014). The origin of segmentation motor activity in the intestine. Nat. Commun. 5, 3326. 10.1038/ncomms4326
    1. Kelly K. A., Code C. F. (1971). Canine gastric pacemaker. Am. J. Physiol. 220, 112–118. 10.1152/ajplegacy.1971.220.1.112
    1. Kim J. H., Du P., Cheng L. K. (2013). Reconstruction of normal and abnormal gastric electrical sources using a potential based inverse method. Physiol. Meas. 34, 1193–1206. 10.1088/0967-3334/34/9/1193
    1. Kim M. S., Chey W. D., Owyang C., Hasler W. L. (1997). Role of plasma vasopressin as a mediator of nausea and gastric slow wave dysrhythmias in motion sickness. Am. J. Physiol. 272, G853–G862. 10.1152/ajpgi.1997.272.4.G853
    1. Koch K. L., Stern R. M., Vasey M., Botti J. J., Creasy G. W., Dwyer A. (1990). Gastric dysrhythmias and nausea of pregnancy. Dig. Dis. Sci. 35, 961–968. 10.1007/BF01537244
    1. Komorowski D., Pietraszek S. (2016). The Use of Continuous wavelet transform based on the fast fourier transform in the analysis of multi-channel electrogastrography recordings. J. Med. Syst. 40, 10. 10.1007/s10916-015-0358-4
    1. Komorowski D., Tkacz E. (2015). A new method for attenuation of respiration artifacts in electrogastrographic (EGG) signals. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 6006–6009. 10.1109/EMBC.2015.7319760
    1. Kurahashi M., Nakano Y., Hennig G. W., Ward S. M., Sanders K. M. (2012). Platelet-derived growth factor receptor alpha-positive cells in the tunica muscularis of human colon. J. Cell. Mol. Med. 16, 1397–1404. 10.1111/j.1582-4934.2011.01510.x
    1. Lammers W. J. (2013). Arrhythmias in the gut. Neurogastroenterol. Motil. 25, 353–357. 10.1111/nmo.12116
    1. Lammers W. J., el-Kays A., Manefield G. W., Arafat K., el-Sharkawy T. Y. (1997). Disturbances in the propagation of the slow wave during acute local ischaemia in the feline small intestine. Eur. J. Gastroenterol. Hepatol. 9, 381–388. 10.1097/00042737-199704000-00012
    1. Lammers W. J., Michiels B., Voeten J., Ver Donck L., Schuurkes J. A. (2008a). Mapping slow waves and spikes in chronically instrumented conscious dogs: automated on-line electrogram analysis. Med. Biol. Eng. Comput. 46, 121–129. 10.1007/s11517-007-0294-7
    1. Lammers W. J., Stephen B. (2008). Origin and propagation of individual slow waves along the intact feline small intestine. Exp. Physiol. 93, 334–346. 10.1113/expphysiol.2007.039180
    1. Lammers W. J., Stephen B., Karam S. M. (2012). Functional reentry and circus movement arrhythmias in the small intestine of normal and diabetic rats. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G684–G689. 10.1152/ajpgi.00332.2011
    1. Lammers W. J., Stephen B. S., Karam S. M. (2015). Slow wave dysrhythmias in the diabetic small intestine. Neurogastroenterol. Motil. 27, 1344. 10.1111/nmo.12608
    1. Lammers W. J., Ver Donck L., Stephen B., Smets D., Schuurkes J. A. (2008b). Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. Gastroenterology 135, 1601–1611. 10.1053/j.gastro.2008.07.020
    1. Leahy A., Besherdas K., Clayman C., Mason I., Epstein O. (1999). Abnormalities of the electrogastrogram in functional gastrointestinal disorders. Am. J. Gastroenterol. 94, 1023–1028. 10.1111/j.1572-0241.1999.01007.x
    1. Leahy A., Besherdas K., Clayman C., Mason I., Epstein O. (2001). Gastric dysrhythmias occur in gastro-oesophageal reflux disease complicated by food regurgitation but not in uncomplicated reflux. Gut 48, 212–215. 10.1136/gut.48.2.212
    1. Lees-Green R., Du P., O'Grady G., Beyder A., Farrugia G., Pullan A. J. (2011). Biophysically based modeling of the interstitial cells of cajal: current status and future perspectives. Front. Physiol. 2:29. 10.3389/fphys.2011.00029
    1. Lien H. C., Sun W. M., Chen Y. H., Kim H., Hasler W., Owyang C. (2003). Effects of ginger on motion sickness and gastric slow-wave dysrhythmias induced by circular vection. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G481–G489. 10.1152/ajpgi.00164.2002
    1. Lim H. C., Lee S. I., Chen J. D., Park H. (2012). Electrogastrography associated with symptomatic changes after prokinetic drug treatment for functional dyspepsia. World J. Gastroenterol. 18, 5948–5956. 10.3748/wjg.v18.i41.5948
    1. Lin X., Chen J. Z. (2001). Abnormal gastric slow waves in patients with functional dyspepsia assessed by multichannel electrogastrography. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G1370–G1375. 10.1152/ajpgi.2001.280.6.G1370
    1. Lin Z. Y., McCallum R. W., Schirmer B. D., Chen J. D. (1998). Effects of pacing parameters on entrainment of gastric slow waves in patients with gastroparesis. Am. J. Physiol. 274, G186–G191. 10.1152/ajpgi.1998.274.1.G186
    1. Linkens D. A. (1978). Canine colonic pacing and coupled oscillator synchronization [proceedings]. J. Physiol. 278, 26P-27P.
    1. Linkens D. A., Mhone P. G. (1979). Frequency transients in a coupled oscillator model of intestinal myoelectrical activity. Comput. Biol. Med. 9, 131–144. 10.1016/0010-4825(79)90029-5
    1. Lloyd C. M., Halstead M. D., Nielsen P. F. (2004). CellML: its future, present and past. Prog. Biophys. Mol. Biol. 85, 433–450. 10.1016/j.pbiomolbio.2004.01.004
    1. Maltsev A. V., Maltsev V. A., Stern M. D. (2017). Clusters of calcium release channels harness the Ising phase transition to confine their elementary intracellular signals. Proc. Natl. Acad. Sci. U.S.A. 114, 7525–7530. 10.1073/pnas.1701409114
    1. Malysz J., Gibbons S. J., Saravanaperumal S. A., Du P., Eisenman S. T., Cao C., et al. . (2017). Conditional genetic deletion of Ano1 in interstitial cells of Cajal impairs Ca2+ transients and slow waves in adult mouse small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G228–G245. 10.1152/ajpgi.00363.2016
    1. Marriott H. J. (1984). Arrhythmia versus dysrhythmia. Am. J. Cardiol. 53, 628. 10.1016/0002-9149(84)90043-2
    1. McNearney T. A., Sallam H. S., Hunnicutt S. E., Doshi D., Wollaston D. E., Mayes M. D., et al. . (2009). Gastric slow waves, gastrointestinal symptoms and peptides in systemic sclerosis patients. Neurogastroenterol. Motil. 21, 1269–e120. 10.1111/j.1365-2982.2009.01350.x
    1. Nelsen T. S., Kohatsu S. (1968). Clinical electrogastrography and its relationship to gastric surgery. Am. J. Surg. 116, 215–222. 10.1016/0002-9610(68)90496-0
    1. O'Grady G., Angeli T. R., Du P., Lahr C., Lammers W. J., Windsor J. A., et al. . (2012a). Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 143, 589-98 e1–e3. 10.1053/j.gastro.2012.05.036
    1. O'Grady G., Du P., Cheng L. K., Egbuji J. U., Lammers W. J., Windsor J. A., et al. . (2010a). Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G585–G592. 10.1152/ajpgi.00125.2010
    1. O'Grady G., Du P., Lammers W. J., Egbuji J. U., Mithraratne P., Chen J. D., et al. . (2010b). High-resolution entrainment mapping of gastric pacing: a new analytical tool. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G314–G321. 10.1152/ajpgi.00389.2009
    1. O'Grady G., Du P., Paskaranandavadivel N., Angeli T. R., Lammers W. J., Asirvatham S. J., et al. . (2012b). Rapid high-amplitude circumferential slow wave propagation during normal gastric pacemaking and dysrhythmias. Neurogastroenterol. Motil. 24, e299–e312. 10.1111/j.1365-2982.2012.01932.x
    1. O'Grady G., Paskaranandavadivel N., Du P., Angeli T., Erickson J. C., Cheng L. K. (2017). Correct techniques for extracellular recordings of electrical activity in gastrointestinal muscle. Nat. Rev. Gastroenterol. Hepatol. 14, 372. 10.1038/nrgastro.2017.15
    1. O'Grady G., Wang T. H., Du P., Angeli T., Lammers W. J., Cheng L. K. (2014). Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons. Clin. Exp. Pharmacol. Physiol. 41, 854–862. 10.1111/1440-1681.12288
    1. Ordog T., Takayama I., Cheung W. K., Ward S. M., Sanders K. M. (2000). Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis. Diabetes 49, 1731–1739. 10.2337/diabetes.49.10.1731
    1. Owyang C., Hasler W. L. (2002). Physiology and pathophysiology of the interstitial cells of Cajal: from bench to bedside. VPathogenesis, I and therapeutic approaches to human gastric dysrhythmias. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G8–G15. 10.1152/ajpgi.00095.2002
    1. Parkman H. P., Hasler W. L., Barnett J. L., Eaker E. Y. (2003). Electrogastrography: a document prepared by the gastric section of the American motility society clinical GI motility testing task force. Neurogastroenterol. Motil. 15, 89–102. 10.1046/j.1365-2982.2003.00396.x
    1. Parsons S. P., Huizinga J. D. (2016). Spatial noise in coupling strength and natural frequency within a pacemaker network; consequences for development of intestinal motor patterns according to a weakly coupled phase oscillator model. Front. Neurosci. 10:19. 10.3389/fnins.2016.00019
    1. Parsons S. P., Huizinga J. D. (2017). The phase response and state space of slow wave contractions in the small intestine. Exp. Physiol. 102, 1118–1132. 10.1113/EP086373
    1. Paskaranandavadivel N., Cheng L. K., Du P., Rogers J. M., O'Grady G. (2017). High-resolution mapping of gastric slow wave recovery profiles: biophysical model, methodology and demonstration of applications. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G265–G276. 10.1152/ajpgi.00127.2017
    1. Paskaranandavadivel N., O'Grady G., Du P.. (2013). Comparison of filtering methods for extracellular gastric slow wave recordings. Neurogastroenterol. Motil. 25, 79–83. 10.1111/nmo.12012
    1. Pfaffenbach B., Adamek R. J., Bartholomaus C., Wegener M. (1997). Gastric dysrhythmias and delayed gastric emptying in patients with functional dyspepsia. Dig. Dis. Sci. 42, 2094–2099. 10.1023/A:1018826719628
    1. Pitt-Francis J., Bernabeu M. O., Cooper J., Garny A., Momtahan L., Osborne J., et al. . (2008). Chaste: using agile programming techniques to develop computational biology software. Philos. Trans. A Math. Phys. Eng. Sci. 366, 3111–3136. 10.1098/rsta.2008.0096
    1. Plank G., Burton R. A., Hales P., Bishop M., Mansoori T., Bernabeu M. O., et al. . (2009). Generation of histo-anatomically representative models of the individual heart: tools and application. Philos. Trans. A Math. Phys. Eng. Sci. 367, 2257–2292. 10.1098/rsta.2009.0056
    1. Poh Y. C., Beyder A., Strege P. R., Farrugia G., Buist M. L. (2012). Quantification of gastrointestinal sodium channelopathy. J. Theor. Biol. 293, 41–48. 10.1016/j.jtbi.2011.09.014
    1. Potse M., Vinet A., Opthof T., Coronel R. (2009). Validation of a simple model for the morphology of the T wave in unipolar electrograms. Am. J. Physiol. Heart Circ. Physiol. 297, H792–801. 10.1152/ajpheart.00064.2009
    1. Sachse F. B., Moreno A. P., Seemann G., Abildskov J. A. (2009). A model of electrical conduction in cardiac tissue including fibroblasts. Ann. Biomed. Eng. 37, 874–889. 10.1007/s10439-009-9667-4
    1. Sanders K. M., Ward S. M., Hennig G. W. (2016). Problems with extracellular recording of electrical activity in gastrointestinal muscle. Nat. Rev. Gastroenterol. Hepatol. 13, 731–774. 10.1038/nrgastro.2016.161
    1. Sathar S., Trew M. L., Du P., O'Grady G., Cheng L. K. (2014). A biophysically based finite-state machine model for analyzing gastric experimental entrainment and pacing recordings. Ann. Biomed. Eng. 42, 858–870. 10.1007/s10439-013-0949-5
    1. Sathar S., Trew M. L. O. G. G., Cheng L. K. (2015). A Multiscale tridomain model for simulating bioelectric gastric pacing. IEEE Trans. Biomed. Eng. 62, 2685–2692. 10.1109/TBME.2015.2444384
    1. Schaap H. M., Smout A. J., Akkermans L. M. (1990). Myoelectrical activity of the Billroth II gastric remnant. Gut 31, 984–988. 10.1136/gut.31.9.984
    1. Simonian H. P., Panganamamula K., Chen J. Z., Fisher R. S., Parkman H. P. (2004). Multichannel electrogastrography (EGG) in symptomatic patients: a single center study. Am. J. Gastroenterol. 99, 478–485. 10.1111/j.1572-0241.2004.04103.x
    1. Singh R. D., Gibbons S. J., Saravanaperumal S. A., Du P., Hennig G. W., Eisenman S. T., et al. . (2014). Ano1, a Ca2+-activated Cl- channel, coordinates contractility in mouse intestine by Ca2+ transient coordination between interstitial cells of Cajal. J. Physiol. 592, 4051–4068. 10.1113/jphysiol.2014.277152
    1. Somarajan S., Muszynski N. D., Cheng L. K., Bradshaw L. A., Naslund T. C., Richards W. O. (2015). Noninvasive biomagnetic detection of intestinal slow wave dysrhythmias in chronic mesenteric ischemia. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G52–G58. 10.1152/ajpgi.00466.2014
    1. Stern R. M., Koch K. L., Stewart W. R., Lindblad I. M. (1987). Spectral analysis of tachygastria recorded during motion sickness. Gastroenterology 92, 92–97. 10.1016/0016-5085(87)90843-2
    1. Szurszewski J. H. (1998). A 100-year perspective on gastrointestinal motility. Am. J. Physiol. 274, G447–G453. 10.1152/ajpgi.1998.274.3.G447
    1. Szurszewski J. H., Farrugia G. (2004). Carbon monoxide is an endogenous hyperpolarizing factor in the gastrointestinal tract. Neurogastroenterol. Motil. 16(Suppl. 1), 81–85. 10.1111/j.1743-3150.2004.00480.x
    1. Trommer P. R. (1982). Cardiolocution and dysrhythmia. Am. J. Cardiol. 50, 1198. 10.1016/0002-9149(82)90445-3
    1. van Helden D. F., Laver D. R., Holdsworth J., Imtiaz M. S. (2010). Generation and propagation of gastric slow waves. Clin. Exp. Pharmacol. Physiol. 37, 516–524. 10.1111/j.1440-1681.2009.05331.x
    1. Wei R., Parsons S. P., Huizinga J. D. (2017). Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators. Exp. Physiol. 102, 329–346. 10.1113/EP086077
    1. Yeoh J. W., Corrias A., Buist M. L. (2016). A mechanistic model of a PDGFRalpha(+) cell. J. Theor. Biol. 408, 127–136. 10.1016/j.jtbi.2016.08.004
    1. Yeoh J. W., Corrias A., Buist M. L. (2017). Modelling human colonic smooth muscle cell electrophysiology. Cell. Mol. Bioeng. 10, 186–197. 10.1007/s12195-017-0479-6

Source: PubMed

3
Suscribir