Effect of the glucagon-like peptide-1 analogue liraglutide on coronary microvascular function in patients with type 2 diabetes - a randomized, single-blinded, cross-over pilot study

Rebekka Faber, Mette Zander, Adam Pena, Marie M Michelsen, Naja D Mygind, Eva Prescott, Rebekka Faber, Mette Zander, Adam Pena, Marie M Michelsen, Naja D Mygind, Eva Prescott

Abstract

Background: Impaired coronary microcirculation is associated with a poor prognosis in patients with type 2 diabetes. In the absence of stenosis of major coronary arteries, coronary flow reserve (CFR) reflects coronary microcirculation. Studies have shown beneficial effects of glucagon-like peptide-1 (GLP-1) on the cardiovascular system. The aim of the study was to explore the short-term effect of GLP-1 treatment on coronary microcirculation estimated by CFR in patients with type 2 diabetes.

Methods: Patients with type 2 diabetes and no history of coronary artery disease were treated with either the GLP-1 analogue liraglutide or received no treatment for 10 weeks, in a randomized, single-blinded, cross-over setup with a 2 weeks wash-out period. The effect of liraglutide on coronary microcirculation was evaluated using non-invasive trans-thoracic Doppler-flow echocardiography during dipyridamole induced stress. Peripheral microvascular endothelial function was assessed by Endo-PAT2000®. Interventions were compared by two-sample t-test after ensuring no carry over effect.

Results: A total of 24 patients were included. Twenty patients completed the study (15 male; mean age 57 ± 9; mean BMI 33.1 ± 4.4, mean baseline CFR 2.35 ± 0.45). There was a small increase in CFR following liraglutide treatment (change 0.18, CI95% [-0.01; 0.36], p = 0.06) but no difference in effect in comparison with no treatment (difference between treatment allocation 0.16, CI95% [-0.08; 0.40], p = 0.18). Liraglutide significantly reduced glycated haemoglobin (HbA1c) (-10.1 mmol/mol CI95% [-13.9; -6.4], p = 0.01), systolic blood pressure (-10 mmHg CI95% [-17; -3], p = 0.01) and weight (-1.9 kg CI95% [-3.6; -0.2], p = 0.03) compared to no treatment. There was no effect on peripheral microvascular endothelial function after either intervention.

Conclusions: In this short-term treatment study, 10 weeks of liraglutide treatment had no significant effect on neither coronary nor peripheral microvascular function in patients with type 2 diabetes. Further long-term studies, preferably in patients with more impaired microvascular function and using a higher dosage of GLP-1 analogues, are needed to confirm these findings.

Trial registration: ClinicalTrials.gov: NCT01931982 .

Figures

Figure 1
Figure 1
Study flow chart.
Figure 2
Figure 2
Measuring CFR by Doppler flow echocardiography. Left anterior descending artery (LAD) flow during rest (A) and LAD flow during dipyridamole induced stress (B).
Figure 3
Figure 3
Participant flow chart.

References

    1. Eroglu S, Sade LE, Bozbas H, Muderrisoglu H. Decreased coronary flow reserve in obese women. Turk Kardiyol Dern Ars. 2009;37(6):391–6.
    1. Tuccillo B, Accadia M, Rumolo S, Iengo R, D'Andrea A, Granata G, et al. Factors predicting coronary flow reserve impairment in patients evaluated for chest pain: an ultrasound study. J Cardiovasc Med (Hagerstown) 2008;9(3):251–5. doi: 10.2459/JCM.0b013e32820588dd.
    1. Rigo F, Cortigiani L, Pasanisi E, Richieri M, Cutaia V, Celestre M, et al. The additional prognostic value of coronary flow reserve on left anterior descending artery in patients with negative stress echo by wall motion criteria. A Transthoracic Vasodilator Stress Echocardiography Study. Am Heart J. 2006;151(1):124–30. doi: 10.1016/j.ahj.2005.03.008.
    1. Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women's Ischemia Syndrome Evaluation) study. J Am Coll Cardiol. 2010;55(25):2825–32. doi: 10.1016/j.jacc.2010.01.054.
    1. Cortigiani L, Rigo F, Gherardi S, Bovenzi F, Molinaro S, Picano E, et al. Coronary flow reserve during dipyridamole stress echocardiography predicts mortality. JACC Cardiovasc Imaging. 2012;5(11):1079–85. doi: 10.1016/j.jcmg.2012.08.007.
    1. Kawata T, Daimon M, Hasegawa R, Toyoda T, Sekine T, Himi T, et al. Prognostic value of coronary flow reserve assessed by transthoracic Doppler echocardiography on long-term outcome in asymptomatic patients with type 2 diabetes without overt coronary artery disease. Cardiovasc Diabetol. 2013;12:121. doi: 10.1186/1475-2840-12-121.
    1. Cortigiani L, Rigo F, Gherardi S, Galderisi M, Bovenzi F, Sicari R. Prognostic meaning of coronary microvascular disease in type 2 diabetes mellitus: a transthoracic Doppler echocardiographic study. J Am Soc Echocardiogr. 2014;27(7):742–8. doi: 10.1016/j.echo.2014.02.010.
    1. Deacon CF, Ahren B. Physiology of incretins in health and disease. Rev Diabet Stud. 2011;8(3):293–306. doi: 10.1900/RDS.2011.8.293.
    1. Wei Y, Mojsov S. Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett. 1995;358(3):219–24. doi: 10.1016/0014-5793(94)01430-9.
    1. Pyke C, Heller RS, Kirk RK, Orskov C, Reedtz-Runge S, Kaastrup P, et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology. 2014;155(4):1280–90. doi: 10.1210/en.2013-1934.
    1. Zhao T, Parikh P, Bhashyam S, Bolukoglu H, Poornima I, Shen YT, et al. Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther. 2006;317(3):1106–13. doi: 10.1124/jpet.106.100982.
    1. Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004;110(8):955–61. doi: 10.1161/01.CIR.0000139339.85840.DD.
    1. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008;117(18):2340–50. doi: 10.1161/CIRCULATIONAHA.107.739938.
    1. Noyan-Ashraf MH, Momen MA, Ban K, Sadi AM, Zhou YQ, Riazi AM, et al. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes. 2009;58(4):975–83. doi: 10.2337/db08-1193.
    1. Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004;109(8):962–5. doi: 10.1161/01.CIR.0000120505.91348.58.
    1. Read PA, Khan FZ, Dutka DP. Cardioprotection against ischaemia induced by dobutamine stress using glucagon-like peptide-1 in patients with coronary artery disease. Heart. 2012;98(5):408–13. doi: 10.1136/hrt.2010.219345.
    1. Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006;12(9):694–9. doi: 10.1016/j.cardfail.2006.08.211.
    1. Gejl M, Sondergaard HM, Stecher C, Bibby BM, Moller N, Botker HE, et al. Exenatide alters myocardial glucose transport and uptake depending on insulin resistance and increases myocardial blood flow in patients with type 2 diabetes. J Clin Endocrinol Metab. 2012;97(7):E1165–9. doi: 10.1210/jc.2011-3456.
    1. Subaran SC, Sauder MA, Chai W, Jahn LA, Fowler DE, Aylor KW, et al. GLP-1 at physiological concentrations recruits skeletal and cardiac muscle microvasculature in healthy humans. Clin Sci (Lond) 2014;127(3):163–70. doi: 10.1042/CS20130708.
    1. Wang D, Luo P, Wang Y, Li W, Wang C, Sun D, et al. Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism. Diabetes. 2013;62(5):1697–708. doi: 10.2337/db12-1025.
    1. Dokken BB, Hilwig WR, Teachey MK, Panchal RA, Hubner K, Allen D, et al. Glucagon-like peptide-1 (GLP-1) attenuates post-resuscitation myocardial microcirculatory dysfunction. Resuscitation. 2010;81(6):755–60. doi: 10.1016/j.resuscitation.2010.01.031.
    1. Hamburg NM, Keyes MJ, Larson MG, Vasan RS, Schnabel R, Pryde MM, et al. Cross-sectional relations of digital vascular function to cardiovascular risk factors in the Framingham Heart Study. Circulation. 2008;117(19):2467–74. doi: 10.1161/CIRCULATIONAHA.107.748574.
    1. Dokken BB, Piermarini CV, Teachey MK, Gura MT, Dameff CJ, Heller BD, et al. Glucagon-like peptide-1 preserves coronary microvascular endothelial function after cardiac arrest and resuscitation: potential antioxidant effects. Am J Physiol Heart Circ Physiol. 2013;304(4):H538–46. doi: 10.1152/ajpheart.00282.2012.
    1. Zhao TC. Glucagon-like peptide-1 (GLP-1) and protective effects in cardiovascular disease: a new therapeutic approach for myocardial protection. Cardiovasc Diabetol. 2013;12:90. doi: 10.1186/1475-2840-12-90.
    1. Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129(24):2518–27. doi: 10.1161/CIRCULATIONAHA.113.008507.
    1. Morris AA, Patel RS, Binongo JN, Poole J, al Mheid I, Ahmed Y, et al. Racial differences in arterial stiffness and microcirculatory function between Black and White Americans. J Am Heart Assoc. 2013;2(2):e002154. doi: 10.1161/JAHA.112.002154.
    1. Mundil D, Cameron-Vendrig A, Husain M. GLP-1 receptor agonists: a clinical perspective on cardiovascular effects. Diab Vasc Dis Res. 2012;9(2):95–108. doi: 10.1177/1479164112441526.
    1. Russell-Jones D, Vaag A, Schmitz O, Sethi BK, Lalic N, Antic S, et al. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met + SU): a randomised controlled trial. Diabetologia. 2009;52(10):2046–55. doi: 10.1007/s00125-009-1472-y.
    1. Zinman B, Gerich J, Buse JB, Lewin A, Schwartz S, Raskin P, et al. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met + TZD) Diabetes Care. 2009;32(7):1224–30. doi: 10.2337/dc08-2124.
    1. Marso SP, Poulter NR, Nissen SE, Nauck MA, Zinman B, Daniels GH, et al. Design of the liraglutide effect and action in diabetes: evaluation of cardiovascular outcome results (LEADER) trial. Am Heart J. 2013;166(5):823–30. doi: 10.1016/j.ahj.2013.07.012.
    1. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26. doi: 10.1056/NEJMoa1307684.
    1. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327–35. doi: 10.1056/NEJMoa1305889.
    1. Bonetti PO, Pumper GM, Higano ST, Holmes DR, Jr, Kuvin JT, Lerman A. Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J Am Coll Cardiol. 2004;44(11):2137–41. doi: 10.1016/j.jacc.2004.08.062.
    1. Sauder KA, West SG, McCrea CE, Campbell JM, Jenkins AL, Jenkins DJ, et al. Test-retest reliability of peripheral arterial tonometry in the metabolic syndrome. Diab Vasc Dis Res. 2014;11(3):201–7. doi: 10.1177/1479164114525971.
    1. Wilk G, Osmenda G, Matusik P, Nowakowski D, Jasiewicz-Honkisz B, Ignacak A, et al. Endothelial function assessment in atherosclerosis: comparison of brachial artery flowmediated vasodilation and peripheral arterial tonometry. Pol Arch Med Wewn. 2013;123(9):443–52.
    1. Hopkins ND, Cuthbertson DJ, Kemp GJ, Pugh C, Green DJ, Cable NT, et al. Effects of 6 months glucagon-like peptide-1 receptor agonist treatment on endothelial function in type 2 diabetes mellitus patients. Diabetes Obes Metab. 2013;15(8):770–3. doi: 10.1111/dom.12089.
    1. Kelly AS, Bergenstal RM, Gonzalez-Campoy JM, Katz H, Bank AJ. Effects of exenatide vs. metformin on endothelial function in obese patients with pre-diabetes: a randomized trial. Cardiovasc Diabetol. 2012;11:64. doi: 10.1186/1475-2840-11-64.
    1. Irace C, De LS, Shehaj E, Carallo C, Loprete A, Scavelli F, et al. Exenatide improves endothelial function assessed by flow mediated dilation technique in subjects with type 2 diabetes: results from an observational research. Diab Vasc Dis Res. 2013;10(1):72–7. doi: 10.1177/1479164112449562.
    1. Rizzo M, Chandalia M, Patti AM, Di Bartolo V, Rizvi AA, Montalto G, et al. Liraglutide decreases carotid intima-media thickness in patients with type 2 diabetes: 8-month prospective pilot study. Cardiovasc Diabetol. 2014;13:49. doi: 10.1186/1475-2840-13-49.
    1. Forst T, Michelson G, Ratter F, Weber MM, Anders S, Mitry M, et al. Addition of liraglutide in patients with Type 2 diabetes well controlled on metformin monotherapy improves several markers of vascular function. Diabet Med. 2012;29(9):1115–8. doi: 10.1111/j.1464-5491.2012.03589.x.
    1. Ayaori M, Iwakami N, Uto-Kondo H, Sato H, Sasaki M, Komatsu T, et al. Dipeptidyl peptidase-4 inhibitors attenuate endothelial function as evaluated by flow-mediated vasodilatation in type 2 diabetic patients. J Am Heart Assoc. 2013;2(1) doi: 10.1161/JAHA.112.003277.
    1. Oyama J, Higashi Y, Node K. Do incretins improve endothelial function? Cardiovasc Diabetol. 2014;13:21. doi: 10.1186/1475-2840-13-21.
    1. Hozumi T, Yoshida K, Akasaka T, Asami Y, Ogata Y, Takagi T, et al. Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the left anterior descending coronary artery by Doppler echocardiography: comparison with invasive technique. J Am Coll Cardiol. 1998;32(5):1251–9. doi: 10.1016/S0735-1097(98)00389-1.
    1. Caiati C, Montaldo C, Zedda N, Montisci R, Ruscazio M, Lai G, et al. Validation of a new noninvasive method (contrast-enhanced transthoracic second harmonic echo Doppler) for the evaluation of coronary flow reserve: comparison with intracoronary Doppler flow wire. J Am Coll Cardiol. 1999;34(4):1193–200. doi: 10.1016/S0735-1097(99)00342-3.
    1. Saraste M, Koskenvuo J, Knuuti J, Toikka J, Laine H, Niemi P, et al. Coronary flow reserve: measurement with transthoracic Doppler echocardiography is reproducible and comparable with positron emission tomography. Clin Physiol. 2001;21(1):114–22. doi: 10.1046/j.1365-2281.2001.00296.x.
    1. Lanza GA, Camici PG, Galiuto L, Niccoli G, Pizzi C, Di MA, et al. Methods to investigate coronary microvascular function in clinical practice. J Cardiovasc Med (Hagerstown) 2013;14(1):1–18. doi: 10.2459/JCM.0b013e328351680f.

Source: PubMed

3
Suscribir