Adult hippocampal neurogenesis reduces memory interference in humans: opposing effects of aerobic exercise and depression

Nicolas Déry, Malcolm Pilgrim, Martin Gibala, Jenna Gillen, J Martin Wojtowicz, Glenda Macqueen, Suzanna Becker, Nicolas Déry, Malcolm Pilgrim, Martin Gibala, Jenna Gillen, J Martin Wojtowicz, Glenda Macqueen, Suzanna Becker

Abstract

Since the remarkable discovery of adult neurogenesis in the mammalian hippocampus, considerable effort has been devoted to unraveling the functional significance of these new neurons. Our group has proposed that a continual turnover of neurons in the DG could contribute to the development of event-unique memory traces that act to reduce interference between highly similar inputs. To test this theory, we implemented a recognition task containing some objects that were repeated across trials as well as some objects that were highly similar, but not identical, to ones previously observed. The similar objects, termed lures, overlap substantially with previously viewed stimuli, and thus, may require hippocampal neurogenesis in order to avoid catastrophic interference. Lifestyle factors such as aerobic exercise and stress have been shown to impact the local neurogenic microenvironment, leading to enhanced and reduced levels of DG neurogenesis, respectively. Accordingly, we hypothesized that healthy young adults who take part in a long-term aerobic exercise regime would demonstrate enhanced performance on the visual pattern separation task, specifically at correctly categorizing lures as "similar." Indeed, those who experienced a proportionally large change in fitness demonstrated a significantly greater improvement in their ability to correctly identify lure stimuli as "similar." Conversely, we expected that those who score high on depression scales, an indicator of chronic stress, would exhibit selective deficits at appropriately categorizing lures. As expected, those who scored high on the Beck Depression Inventory (BDI) were significantly worse than those with relatively lower BDI scores at correctly identifying lures as "similar," while performance on novel and repeated stimuli was identical. Taken together, our results support the hypothesis that adult-born neurons in the DG contribute to the orthogonalization of incoming information.

Keywords: depression; exercise; hippocampus; interference; neurogenesis; pattern separation.

Figures

Figure 1
Figure 1
Correct classification of similar lures pre- vs. post-exercise in Experiment 1 (A), and in those with below median and above median BDI scores in Experiment 2 (B,C). (A) Median change in % correct identification of lures as “similar” (bias corrected ranked difference scores) following exercise for responders vs. non-responders. (B) Mean % correct identification of lures as “similar” (bias corrected, ± standard error) when the original target appeared in the same block. (C) Mean % correct identification of lures as “similar” (bias corrected, ± standard error) when the target appeared in a previous block. *p ≤ 0.05.
Figure 2
Figure 2
Percent change in fitness scores (VO2peak) vs. change in mean % correct identification of lures as “similar” following exercise (r = 0.74, p < 0.01).**p ≤ 0.01.
Figure 3
Figure 3
The behavioral pattern separation task used in Experiment 2. In each block, everyday objects are displayed 1 at a time in a sequence of presentation trials followed by a sequence of recognition trials. In recognition trials, the object can either be old (an exact repetition of a previously presented object), similar, but not identical, to a previous target, or a new, completely unrelated foil. Each block has a distinct visual context (background image). In recognition trials, for repetitions and similar items, the associated target may have been seen within the same block (same temporal and visual context) or within a previous block (different temporal and visual context).
Figure 4
Figure 4
Mean bias toward pattern separation vs. pattern completion (mean probability of correctly identifying lures as “similar” minus probability of misidentifying lures as “old,” ± standard error) vs. BDI score in Experiment 2 (A) and vs. age in Toner et al. (B). (A) Mean bias scores when related target appeared in the same block as lure, for those with below median vs. above median BDI scores. (B) Mean bias scores for younger vs. older adults. Adapted from Figure 2 in Toner et al. (2009) and reproduced with permission from Cold Spring Harbor Laboratory Press. *p ≤ 0.05.
Figure 5
Figure 5
Mean bias toward pattern separation vs. pattern completion (mean probability of correctly identifying lures as “similar” minus probability of misidentifying lures as “old,” ± standard error) in Experiment 2 for those with below median vs. above median BDI scores, (A) for “more similar” lures, when target was within the same block, (B) for “less similar” lures, when target was within the same block, (C) for “more similar” lures, when target appeared in a different block, and (D) for “less similar” lures, when target appeared in a different block.**p ≤ 0.01.
Figure 6
Figure 6
Mean % correct identification of similar lures (bias corrected) as a function of BDI scores, (A) when they appear in the same block as the original target (r = −0.272, p = 0.05), (B) when they are presented in a different block from the original target (r = −0.297, p = 0.03).*p ≤ 0.05.

References

    1. Aimone J. B., Wiles J., Gage F. H. (2006). Potential role for adult neurogenesis in the encoding of time in new memories. Nat. Neurosci. 9, 723–727 10.1038/nn1707
    1. Amaral D. G., Ishizuka N., Claiborne B. (1990). Neurons, numbers and the hippocampal network. Prog. Brain Res. 83, 1–11
    1. Appleby P. A., Wiskott L. (2009). Additive neurogenesis as a strategy for avoiding interference in a sparsely-coding dentate gyrus. Network 20, 137–161 10.1080/09548980902993156
    1. Bakker A., Kirwan C. B., Miller M., Stark C. E. L. (2008). Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319, 1640–1642 10.1126/science.1152882
    1. Barker J. M., Wojtowicz J. M., Boonstra R. (2005). Where's my dinner? Adult neurogenesis in free-living food-storing rodents. Genes Brain Behav. 4, 89–98 10.1111/j.1601-183X.2004.00097.x
    1. Barnes C. A., McNaughton B. L., Mizumori S. J. Y., Leonard B. W., Lin L.-H. (1990). Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. Prog. Brain Res. 83, 287–300
    1. Bath K. G., Jing D. Q., Dincheva I., Neeb C. C., Pattwell S. S., Chao M. V., et al. (2012). BDNF Val66Met impairs fluoxetine-induced enhancement of adult hippocampus plasticity. Neuropsychopharmacology 37, 1297–1304 10.1038/npp.2011.318
    1. Becker S. (2005). A computational principle for hippocampal learning and neurogenesis. Hippocampus 15, 722–738 10.1002/hipo.20095
    1. Becker S., MacQueen G., Wojtowicz J. M. (2009). Computational modeling and empirical studies of hippocampal neurogenesis-dependent memory: effects of interference, stress and depression. Brain Res. 1299, 45–54 10.1016/j.brainres.2009.07.095
    1. Becker S., Wojtowicz J. M. (2007). A model of hippocampal neurogenesis in memory and mood disorders. Trends Cogn. Sci. 11, 70–76 10.1016/j.tics.2006.10.013
    1. Brown E. S., Rush A. J., McEwen B. S. (1999). Hippocampal remodeling and damage by corticosteroids: implications for mood disorders. Neuropsychopharmacology 21, 474–484 10.1016/S0893-133X(99)00054-8
    1. Cameron H. A., Gould E. (1994). Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 61, 203–209 10.1016/0306-4522(94)90224-0
    1. Campbell S., Marriott M., Nahmias C., MacQueen G. M. (2004). Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am. J. Psychiatry 161, 598–607 10.1176/appi.ajp.161.4.598
    1. Clelland C. D., Choi M., Romberg C., Clemenson G. D., Fragniere A., Tyers P., et al. (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325, 210–213 10.1126/science.1173215
    1. Cotman C. W., Berchtold N. C., Christie L.-A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464–472 10.1016/j.tins.2007.06.011
    1. Creer D. J., Romberg C., Saksida L. M., van Praag H., Bussey T. J. (2010). Running enhances spatial pattern separation in mice. Proc. Natl. Acad. Sci. U.S.A. 107, 2367–2372 10.1073/pnas.0911725107
    1. Cunha C., Brambilla R., Thomas K. L. (2010). A simple role for BDNF in learning and memory? Front. Mol. Neurosci. 3:1 10.3389/neuro.02.001.2010
    1. de Lisio M., Phan N., Boreham D. R., Parise G. (2011). Exercise-induced protection of bone marrow cells following exposure to radiation. Appl. Physiol. Nutr. Metab. 36, 80–87 10.1139/H10-087
    1. Ding Q., Vaynman S., Akhavan M., Ying Z., Gomez-Pinilla F. (2006). Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140, 823–833 10.1016/j.neuroscience.2006.02.084
    1. Fabel K., Wolf S. A., Ehninger D., Babu H., Leal-Galicia P., Kempermann G. (2009). Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front. Neurosci. 3:50 10.3389/neuro.22.002.2009
    1. Ge S., Goh E. L. K., Sailor K. A., Kitabatake Y., Ming G.-L., Song H. (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589–593 10.1038/nature04404
    1. Glasper E. R., Llorens-Martin M. V., Leuner B., Gould E., Trejo J. L. (2010). Blockade of insulin-like growth factor-I has complex effects on structural plasticity in the hippocampus. Hippocampus 20, 706–712 10.1002/hipo.20672
    1. Gormley S. E., Swain D. P., High R., Spina R. J., Dowling E. A., Kotipalli U. S., et al. (2008). Effect of intensity of aerobic training on VO2max. Med. Sci. Sports Exerc. 40, 1336–1343 10.1249/MSS.0b013e31816c4839
    1. Heine V. M., Maslam S., Joels M., Lucassen P. J. (2004). Prominent decline of newborn cell proliferation, differentiation, and apoptosis in the aging dentate gyrus, in absence of an age-related hypothalamus-pituitary-adrenal axis activation. Neurobiol. Aging 25, 361–375 10.1016/S0197-4580(03)00090-3
    1. Henry R. A., Hughes S. M., Connor B. (2007). AAV-mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid-lesioned adult rat brain. Eur. J. Neurosci. 25, 3513–3525 10.1111/j.1460-9568.2007.05625.x
    1. Herting M. M., Nagel B. J. (2012). Aerobic fitness relates to learning on a virtual morris water task and hippocampal volume in adolescents. Behav. Brain Res. 233, 517–525 10.1016/j.bbr.2012.05.012
    1. Hickson R. C., Bomze H. A., Holloszy J. O. (1977). Increase in aerobic power induced by a strenuous program of endurance exercise. J. Appl. Physiol. 42, 372–376
    1. Holden H. M., Hoebel C., Loftis K., Gilbert P. E. (2012). Spatial pattern separation in cognitively normal young and older adults. Hippocampus 22, 1826–1832 10.1002/hipo.22017
    1. Jang M.-H., Shin M.-C., Jung S.-B., Lee T.-H., Bahn G.-H., Kwon Y.-K., et al. (2002). Alcohol and nicotine reduce cell proliferation and enhance apoptosis in dentate gyrus. Neuroreport 13, 1509–1513
    1. Johnson K. M., Boonstra R., Wojtowicz J. M. (2010). Hippocampal neurogenesis in food-storing red squirrels: the impact of age and spatial behaviour. Genes Brain Behav. 9, 583–591 10.1111/j.1601-183X.2010.00589.x
    1. Jovanovic J. N., Czernik A. J., Fienberg A. A., Greengard P., Sihra T. S. (2000). Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat. Neurosci. 3, 323–329 10.1038/73888
    1. Jung M. W., McNaughton B. L. (1993). Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3, 165–182 10.1002/hipo.450030209
    1. Kempermann G. (2010). The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci. 31, 163–169 10.1016/j.tins.2008.01.002
    1. Kesner R. P. (2007). A behavioral analysis of dentate gyrus function. Prog. Brain Res. 163, 567–576 10.1016/S0079-6123(07)63030-1
    1. Kirwan C. B., Stark C. E. L. (2007). Overcoming interference: an fMRI investigation of pattern separation in the medial temporal lobe. Learn. Mem. 14, 625–633 10.1101/lm.663507
    1. Klempin F., Kempermann G. (2007). Adult hippocampal neurogenesis and aging. Eur. Arch. Psychiatry Clin. Neurosci. 257, 271–280 10.1007/s00406-007-0731-5
    1. Knoth R., Singec I., Ditter M., Pantazis G., Capetian P., Meyer R. P., et al. (2010). Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS ONE 5:e8809 10.1371/journal.pone.0008809
    1. Leutgeb J. K., Leutgeb S., Moser M.-B., Moser E. I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315, 961–966 10.1126/science.1135801
    1. Li Y., Luikart B. W., Birnbaum S., Chen J., Kwon C.-H., Kernie S. G., et al. (2008). TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 59, 399–412 10.1016/j.neuron.2008.06.023
    1. Luu P., Sill O. C., Gao L., Becker S., Wojtowicz J. M., Smith D. M. (2012). The role of adult hippocampal neurogenesis in reducing interference. Behav. Neurosci. 126, 381–391 10.1037/a0028252
    1. MacQueen G. M., Campbell S., McEwen B. S., MacDonald K., Amano S., Joffe R. T., et al. (2003). Course of illness, hippocampal function, and hippocampal volume in major depression. Proc. Natl. Acad. Sci. U.S.A. 100, 1387–1392 10.1073/pnas.0337481100
    1. Manganas L. N., Zhang X., Li Y., Hazel R. D., Smith S. D., Wagshul M. E., et al. (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 318, 980–985 10.1126/science.1147851
    1. Markwardt S. J., Wadiche J. I., Overstreet-Wadiche L. S. (2009). Input-specific GABAergic signaling to newborn neurons in adult dentate gyrus. J. Neurosci. 29, 15063–15072 10.1523/JNEUROSCI.2727-09.2009
    1. Marr D. (1971). Simple memory: a theory for archicortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 262, 23–81 10.1098/rstb.1971.0078
    1. McClelland J. L., McNaughton B. L., O'Reilly R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 10.1037/0033-295X.102.3.419
    1. McEwen B. S. (2001). Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann. N.Y. Acad. Sci. 933, 265–277 10.1111/j.1749-6632.2001.tb05830.x
    1. Mirescu C., Gould E. (2006). Stress and adult neurogenesis. Hippocampus 16, 233–238 10.1002/hipo.20155
    1. Morris S. A., Eaves D. W., Smith A. R., Nixon K. (2010). Alcohol inhibition of neurogenesis: a mechanism of hippocampal neurodegeneration in an adolescent alcohol abuse model. Hippocampus 20, 596–607 10.1002/hipo.20665
    1. Ngwenya L. B., Peters A., Rosene D. L. (2006). Maturational sequence of newly generated neurons in the dentate gyrus of the young adult rhesus monkey. J. Comp. Neurol. 498, 204–216 10.1002/cne.21045
    1. Nolan C. R., Wyeth G., Milford M., Wiles J. (2011). The race to learn: spike timing and STDP can coordinate learning and recall in CA3. Hippocampus 21, 647–660 10.1002/hipo.20777
    1. Olson A. K., Eadie B. D., Ernst C., Christie B. R. (2006). Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus 16, 250–260 10.1002/hipo.20157
    1. Pereira A. C., Huddleston D. E., Brickman A. M., Sosunov A. A., Hen R., McKhann G. M., et al. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. U.S.A. 104, 5638–5643 10.1073/pnas.0611721104
    1. Sahay A., Scobie K. N., Hill A. S., O'Carroll C. M., Kheirbek M. A., Burghardt N. S., et al. (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470 10.1038/nature09817
    1. Sairanen M., Lucas G., Ernfors P., Castren M., Castren E. (2005). Brain-derived neurotrophic factor and antidepressant drugs have different, but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J. Neurosci. 25, 1089–1094 10.1523/JNEUROSCI.3741-04.2005
    1. Santarelli L., Saxe M., Gross C., Surget A., Battaglia F., Dulawa S., et al. (2008). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 10.1126/science.1083328
    1. Scharfman H., Goodman J., Macleod A., Phani S., Antonelli C., Croll S. (2005). Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp. Neurol. 192, 348–356 10.1016/j.expneurol.2004.11.016
    1. Shimizu E., Hashimoto K., Okamura N., Koike K., Komatsu N., Kumakiri C., et al. (2003). Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol. Psychiatry 54, 70–75
    1. Snyder J. S., Kee N., Wojtowicz J. M. (2001). Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J. Neurophysiol. 85, 2423–2431
    1. Snyder J. S., Choe J. S., Clifford M. A., Jeurling S. I., Hurley P., Brown A., et al. (2009). Adult-born hippocampal neurons are more numerous, faster-maturing and more involved in behavior in rats than in mice. J. Neurosci. 18, 14484–14495 10.1523/JNEUROSCI.1768-09.2009
    1. Snyder J. S., Soumier A., Brewer M., Pickel J., Cameron H. A. (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476, 458–461 10.1038/nature10287
    1. Stark S. M., Yassa M. A., Stark C. E. L. (2010). Individual differences in spatial pattern separation performance associated with healthy aging in humans. Learn. Mem. 17, 284–288 10.1101/lm.1768110
    1. Stark S. M., Yassa M. A., Lacy J. W., Stark C. E. L. (2013). A task to assess behavioral pattern separation (BPS) in humans: data from healthy aging and mild cognitive impairment. Neuropsychologia. Available online at: 10.1016/j.neuropsychologia.2012.12.014
    1. Toner C. K., Pirogovsky E., Kirwan C. B., Gilbert P. E. (2009). Visual object pattern separation deficits in nondemented older adults. Learn. Mem. 16, 338–342 10.1101/lm.1315109
    1. Trejo J. L., Carro E., Torres-Aleman I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628–1634
    1. van Praag H., Christie B. R., Sejnowski T. J., Gage F. H. (1999a). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. U.S.A. 96, 13427–13431
    1. van Praag H., Kempermann G., Gage F. H. (1999b). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2, 266–270 10.1038/6368
    1. van Praag H., Shubert T., Zhao C., Gage F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 25, 8680–8685 10.1523/JNEUROSCI.1731-05.2005
    1. van Praag H. (2009). Exercise and the brain: something to chew on. Trends Neurosci. 32, 283–290 10.1016/j.tins.2008.12.007
    1. Warner-Schmidt J. L., Duman R. S. (2006). Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16, 239–249 10.1002/hipo.20156
    1. Winocur G., Wojtowicz J. M., Sekeres M., Snyder J. S., Wang S. (2006). Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus 16, 296–304 10.1002/hipo.20163
    1. Winocur G., Becker S., Luu P., Rosenzweig S., Wojtowicz J. M. (2012). Adult hippocampal neurogenesis and memory interference. Behav. Brain Res. 227, 464–469 10.1016/j.bbr.2011.05.032
    1. Yassa M. A., Lacy J. W., Stark S. M., Albert M. S., Gallagher M., Stark C. E. L. (2011). Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus 21, 968–979 10.1002/hipo.20808
    1. Young K. M., Merson T. D., Sotthibundhu A., Coulson E. J., Bartlett P. F. (2007). p75 neurotrophin receptor expression defines a population of BDNF-responsive neurogenic precursor cells. J. Neurosci. 27, 5146–5155 10.1523/JNEUROSCI.0654-07.2007

Source: PubMed

3
Suscribir