Physical therapy and deep brain stimulation in Parkinson's Disease: protocol for a pilot randomized controlled trial

Ryan P Duncan, Linda R Van Dillen, Jane M Garbutt, Gammon M Earhart, Joel S Perlmutter, Ryan P Duncan, Linda R Van Dillen, Jane M Garbutt, Gammon M Earhart, Joel S Perlmutter

Abstract

Background: Subthalamic nucleus deep brain stimulation (STN-DBS) reduces tremor, muscle stiffness, and bradykinesia in people with Parkinson's Disease (PD). Walking speed, known to be reduced in PD, typically improves after surgery; however, other important aspects of gait may not improve. Furthermore, balance may worsen and falls may increase after STN-DBS. Thus, interventions to improve balance and gait could reduce morbidity and improve quality of life following STN-DBS. Physical therapy (PT) effectively improves balance and gait in people with PD, but studies on the effects of PT have not been extended to those treated with STN-DBS. As such, the efficacy, safety, and feasibility of PT in this population remain to be determined. The purpose of this pilot study is to address these unmet needs. We hypothesize that PT designed to target balance and gait impairment will be effective, safe, and feasible in this population.

Methods/design: Participants with PD treated with STN-DBS will be randomly assigned to either a PT or control group. Participants assigned to PT will complete an 8-week, twice-weekly PT program consisting of exercises designed to improve balance and gait. Control group participants will receive the current standard of care following STN-DBS, which does not include prescription of PT. The primary aim is to assess preliminary efficacy of PT on balance (Balance Evaluation Systems Test). A secondary aim is to assess efficacy of PT on gait (GAITRite instrumented walkway). Participants will be assessed OFF medication/OFF stimulation and ON medication/ON stimulation at baseline and at 8 and 12 weeks after baseline. Adverse events will be measured over the duration of the study, and adherence to PT will be measured to determine feasibility.

Discussion: To our knowledge, this will be the first study to explore the preliminary efficacy, safety, and feasibility of PT for individuals with PD with STN-DBS. If the study suggests potential efficacy, then this would justify larger trials to test effectiveness and safety of PT for those with PD with STN-DBS.

Trial registration: NCT03181282 (clinicaltrials.gov). Registered on 7 June 2017.

Keywords: Balance; Deep brain stimulation; Gait; Parkinson’s disease; Physical therapy.

Conflict of interest statement

This study received ethics approval from the Human Research Protection Office at Washington University in St. Louis (IRB ID: 201609148). All participants will provide written, informed consent prior to participation in the study.Not applicable.The authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Diagram depicting participant recruitment, randomization, assessments, and intervention

References

    1. Chou KL, Taylor JL, Patil PG. The MDS-UPDRS tracks motor and non-motor improvement due to subthalamic nucleus deep brain stimulation in Parkinson disease. Parkinsonism Relat Disord. 2013;19(11):966–969. doi: 10.1016/j.parkreldis.2013.06.010.
    1. Ponce FA, Lozano AM. Deep brain stimulation state of the art and novel stimulation targets. Prog Brain Res. 2010;184:311–324. doi: 10.1016/S0079-6123(10)84016-6.
    1. Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68(5):384–386. doi: 10.1212/01.wnl.0000247740.47667.03.
    1. Roberts-Warrior D, Overby A, Jankovic J, et al. Postural control in Parkinson’s disease after unilateral posteroventral pallidotomy. Brain. 2000;123(Pt 10):2141–2149. doi: 10.1093/brain/123.10.2141.
    1. Rocchi L, Chiari L, Cappello A, Gross A, Horak FB. Comparison between subthalamic nucleus and globus pallidus internus stimulation for postural performance in Parkinson’s disease. Gait Posture. 2004;19(2):172–183. doi: 10.1016/S0966-6362(03)00059-6.
    1. Rocchi L, Chiari L, Horak FB. Effects of deep brain stimulation and levodopa on postural sway in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2002;73(3):267–274. doi: 10.1136/jnnp.73.3.267.
    1. St George RJ, Carlson-Kuhta P, Burchiel KJ, Hogarth P, Frank N, Horak FB. The effects of subthalamic and pallidal deep brain stimulation on postural responses in patients with Parkinson disease. J Neurosurg. 2012;116(6):1347–1356. doi: 10.3171/2012.2.JNS11847.
    1. Nantel J, McDonald JC, Bronte-Stewart H. Effect of medication and STN-DBS on postural control in subjects with Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(3):285–289. doi: 10.1016/j.parkreldis.2011.11.005.
    1. St George RJ, Nutt JG, Burchiel KJ, Horak FB. A meta-regression of the long-term effects of deep brain stimulation on balance and gait in PD. Neurology. 2010;75(14):1292–1299. doi: 10.1212/WNL.0b013e3181f61329.
    1. Weaver FM, Follett K, Stern M, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009;301(1):63–73. doi: 10.1001/jama.2008.929.
    1. Hausdorff JM, Schaafsma JD, Balash Y, Bartels AL, Gurevich T, Giladi N. Impaired regulation of stride variability in Parkinson's disease subjects with freezing of gait. Exp Brain Res. 2003;149(2):187–194. doi: 10.1007/s00221-002-1354-8.
    1. Hausdorff JM, Gruendlinger L, Scollins L, O'Herron S, Tarsy D. Deep brain stimulation effects on gait variability in Parkinson’s disease. Mov Disord. 2009;24(11):1688–1692. doi: 10.1002/mds.22554.
    1. van Nuenen BF, Esselink RA, Munneke M, Speelman JD, van Laar T, Bloem BR. Postoperative gait deterioration after bilateral subthalamic nucleus stimulation in Parkinson’s disease. Mov Disord. 2008;23(16):2404–2406. doi: 10.1002/mds.21986.
    1. Bloem BR, Hausdorff JM, Visser JE, Giladi N. Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov Disord. 2004;19(8):871–884. doi: 10.1002/mds.20115.
    1. Tomlinson CL, Patel S, Meek C, et al. Physiotherapy versus placebo or no intervention in Parkinson’s disease. Cochrane Database Syst Rev. 2012;8:CD002817.
    1. Bello O, Sanchez JA, Lopez-Alonso V, et al. The effects of treadmill or overground walking training program on gait in Parkinson’s disease. Gait Posture. 2013;38(4):590–595. doi: 10.1016/j.gaitpost.2013.02.005.
    1. Hirsch MA, Toole T, Maitland CG, Rider RA. The effects of balance training and high-intensity resistance training on persons with idiopathic Parkinson’s disease. Arch Phys Med Rehabil. 2003;84(8):1109–1117. doi: 10.1016/S0003-9993(03)00046-7.
    1. Smania N, Corato E, Tinazzi M, et al. Effect of balance training on postural instability in patients with idiopathic Parkinson’s disease. Neurorehabil Neural Repair. 2010;24(9):826–834. doi: 10.1177/1545968310376057.
    1. Duncan RP, Earhart GM. Randomized controlled trial of community-based dancing to modify disease progression in Parkinson disease. Neurorehabil Neural Repair. 2012;26(2):132–143. doi: 10.1177/1545968311421614.
    1. Ellis T, Katz DI, White DK, DePiero TJ, Hohler AD, Saint-Hilaire M. Effectiveness of an inpatient multidisciplinary rehabilitation program for people with Parkinson disease. Phys Ther. 2008;88(7):812–819. doi: 10.2522/ptj.20070265.
    1. Li F, Harmer P, Fitzgerald K, et al. Tai chi and postural stability in patients with Parkinson’s disease. N Engl J Med. 2012;366(6):511–519. doi: 10.1056/NEJMoa1107911.
    1. Prodoehl J, Rafferty MR, David FJ, et al. Two-year exercise program improves physical function in Parkinson’s disease: the PRET-PD randomized clinical trial. Neurorehabil Neural Repair. 2015;29(2):112–122. doi: 10.1177/1545968314539732.
    1. Schenkman M, Hall DA, Baron AE, Schwartz RS, Mettler P, Kohrt WM. Exercise for people in early- or mid-stage Parkinson disease: a 16-month randomized controlled trial. Phys Ther. 2012;92(11):1395–1410. doi: 10.2522/ptj.20110472.
    1. Okun MS, Zeilman PR. Parkinson’s disease: guide to deep brain stimulation therapy. 2017.
    1. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ. What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study. Neurology. 1992;42(6):1142–1146. doi: 10.1212/WNL.42.6.1142.
    1. Nogaki H, Kakinuma S, Morimatsu M. Muscle weakness in Parkinson’s disease: a follow-up study. Parkinsonism Relat Disord. 2001;8(1):57–62. doi: 10.1016/S1353-8020(01)00002-5.
    1. Calne DB, Snow BJ, Lee C. Criteria for diagnosing Parkinson’s disease. Ann Neurol. 1992;32(Suppl):S125–S127. doi: 10.1002/ana.410320721.
    1. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Schoneburg B, Mancini M, Horak F, Nutt JG. Framework for understanding balance dysfunction in Parkinson’s disease. Mov Disord. 2013;28(11):1474–1482. doi: 10.1002/mds.25613.
    1. Frenkel-Toledo S, Giladi N, Peretz C, Herman T, Gruendlinger L, Hausdorff JM. Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease. Mov Disord. 2005;20(9):1109–1114. doi: 10.1002/mds.20507.
    1. Herman T, Giladi N, Gruendlinger L, Hausdorff JM. Six weeks of intensive treadmill training improves gait and quality of life in patients with Parkinson’s disease: a pilot study. Arch Phys Med Rehabil. 2007;88(9):1154–1158. doi: 10.1016/j.apmr.2007.05.015.
    1. Strouwen C, Molenaar E, Munks L, et al. Training dual tasks together or apart in Parkinson’s disease: results from the DUALITY trial. Mov Disord. 2017;32(8):1201–10.
    1. Brauer SG, Morris ME. Can people with Parkinson’s disease improve dual tasking when walking? Gait Posture. 2010;31(2):229–233. doi: 10.1016/j.gaitpost.2009.10.011.
    1. Temperli P, Ghika J, Villemure JG, Burkhard PR, Bogousslavsky J, Vingerhoets FJ. How do parkinsonian signs return after discontinuation of subthalamic DBS? Neurology. 2003;60(1):78–81. doi: 10.1212/WNL.60.1.78.
    1. Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–2170. doi: 10.1002/mds.22340.
    1. Horak FB, Wrisley DM, Frank J. The Balance Evaluation Systems Test (BESTest) to differentiate balance deficits. Phys Ther. 2009;89(5):484–498. doi: 10.2522/ptj.20080071.
    1. Leddy AL, Crowner BE, Earhart GM. Utility of the Mini-BESTest, BESTest, and BESTest sections for balance assessments in individuals with Parkinson disease. J Neurol Phys Ther. 2011;35(2):90–97. doi: 10.1097/NPT.0b013e31821a620c.
    1. Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x.
    1. United States Department of Health and Human Services – Office of Human Research Protections. Unanticipated problems involving risks & adverse events guidance; 2007. ). Accessed 7 July 2017.
    1. van der Kolk NM, King LA. Effects of exercise on mobility in people with Parkinson’s disease. Mov Disord. 2013;28(11):1587–1596. doi: 10.1002/mds.25658.
    1. Peto V, Jenkinson C, Fitzpatrick R, Greenhall R. The development and validation of a short measure of functioning and well being for individuals with Parkinson’s disease. Qual Life Res. 1995;4(3):241–248. doi: 10.1007/BF02260863.
    1. Cohen J. Statistical power analysis for the behavioural sciences. New York: Academic Press; 1969.

Source: PubMed

3
Suscribir