Assessing Free-Radical-Mediated DNA Damage during Cardiac Surgery: 8-Oxo-7,8-dihydro-2'-deoxyguanosine as a Putative Biomarker

Linda Turnu, Alessandro Di Minno, Benedetta Porro, Isabella Squellerio, Alice Bonomi, Chiara Maria Manega, José Pablo Werba, Alessandro Parolari, Elena Tremoli, Viviana Cavalca, Linda Turnu, Alessandro Di Minno, Benedetta Porro, Isabella Squellerio, Alice Bonomi, Chiara Maria Manega, José Pablo Werba, Alessandro Parolari, Elena Tremoli, Viviana Cavalca

Abstract

Coronary artery bypass grafting (CABG), one of the most common cardiac surgical procedures, is characterized by a burst of oxidative stress. 8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), produced following DNA repairing, is used as an indicator of oxidative DNA damage in humans. The effect of CABG on oxidative-induced DNA damage, evaluated through the measurement of urinary 8-oxodG by a developed and validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in 52 coronary artery disease (CAD) patients, was assessed before (T0), five days (T1), and six months (T2) after CABG procedure. These results were compared with those obtained in 40 subjects with cardiovascular risk factors and without overt cardiovascular disease (CTR). Baseline (T0) 8-oxodG was higher in CAD than in CTR (p = 0.035). A significant burst was detected at T1 (p = 0.019), while at T2, 8-oxodG levels were significantly lower than those measured at T0 (p < 0.0001) and comparable to those found in CTR (p = 0.73). A similar trend was observed for urinary 8-iso-prostaglandin F2α (8-isoPGF2α ), a reliable marker of oxidative stress. In the whole population baseline, 8-oxodG significantly correlated with 8-isoPGF2α levels (r = 0.323, p = 0.002). These data argue for CABG procedure in CAD patients as inducing a short-term increase in oxidative DNA damage, as revealed by 8-oxodG concentrations, and a long-term return of such metabolite toward physiological levels.

Figures

Figure 1
Figure 1
Representative chromatogram of 8-oxodG and of its internal standard 15N5-8-oxodG in urine pool sample.
Figure 2
Figure 2
Levels of 8-oxodG measured in urine from CAD patients and CTR subjects. Data are represented as mean ± SD. Comparisons between groups were performed by covariance analysis, adjusting for age and sex.
Figure 3
Figure 3
Time course of 8-oxodG (a) and of 8-isoPGF2α (b) following CABG surgery. Data are represented as mean ± SD.
Figure 4
Figure 4
Correlation between baseline levels of 8-oxodG and 8-iso-PGF2α in the whole population analyzed (n = 92).

References

    1. Bravata D. M., Gienger A. L., McDonald K. M., et al. Systematic review: the comparative effectiveness of percutaneous coronary interventions and coronary artery bypass graft surgery. Annals of Internal Medicine. 2007;147(10):703–716. doi: 10.7326/0003-4819-147-10-200711200-00185.
    1. Gerritsen W. B., Aarts L. P., Morshuis W. J., Haas F. J. Indices of oxidative stress in urine of patients undergoing coronary artery bypass grafting. European Journal of Clinical Chemistry and Clinical Biochemistry. 1997;35(10):737–742.
    1. Lazzarino G., Raatikainen P., Nuutinen M., et al. Myocardial release of malondialdehyde and purine compounds during coronary bypass surgery. Circulation. 1994;90(1):291–297. doi: 10.1161/01.CIR.90.1.291.
    1. Cavalca V., Tremoli E., Porro B., et al. Oxidative stress and nitric oxide pathway in adult patients who are candidates for cardiac surgery: patterns and differences. Interactive Cardiovascular and Thoracic Surgery. 2013;17(6):923–930. doi: 10.1093/icvts/ivt386.
    1. Garcia-de-la-Asuncion J., Pastor E., Perez-Griera J., et al. Oxidative stress injury after on-pump cardiac surgery: effects of aortic cross clamp time and type of surgery. Redox Report. 2013;18(5):193–199. doi: 10.1179/1351000213Y.0000000060.
    1. Cavalca V., Sisillo E., Veglia F., et al. Isoprostanes and oxidative stress in off-pump and on-pump coronary bypass surgery. The Annals of Thoracic Surgery. 2006;81(2):562–567. doi: 10.1016/j.athoracsur.2005.08.019.
    1. Luyten C. R., van Overveld F. J., De Backer L. A., et al. Antioxidant defence during cardiopulmonary bypass surgery. European Journal of Cardio-Thoracic Surgery. 2005;27(4):611–616. doi: 10.1016/j.ejcts.2004.12.013.
    1. Vogt S., Sattler A., Sirat A. S., et al. Different profile of antioxidative capacity results in pulmonary dysfunction and amplified inflammatory response after CABG surgery. The Journal of Surgical Research. 2007;139(1):136–142. doi: 10.1016/j.jss.2006.09.011.
    1. Karahalil B., Kesimci E., Emerce E., Gumus T., Kanbak O. The impact of OGG1, MTH1 and MnSOD gene polymorphisms on 8-hydroxy-2′-deoxyguanosine and cellular superoxide dismutase activity in myocardial ischemia-reperfusion. Molecular Biology Reports. 2011;38(4):2427–2435. doi: 10.1007/s11033-010-0378-6.
    1. van Loon B., Markkanen E., Hubscher U. Oxygen as a friend and enemy: how to combat the mutational potential of 8-oxo-guanine. DNA Repair. 2010;9(6):604–616. doi: 10.1016/j.dnarep.2010.03.004.
    1. Devasagayam T. P., Steenken S., Obendorf M. S., Schulz W. A., Sies H. Formation of 8-hydroxy(deoxy)guanosine and generation of strand breaks at guanine residues in DNA by singlet oxygen. Biochemistry. 1991;30(25):6283–6289. doi: 10.1021/bi00239a029.
    1. Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutation Research. 1997;387(3):147–163. doi: 10.1016/S1383-5742(97)00035-5.
    1. Beckman K. B., Ames B. N. Oxidative decay of DNA. The Journal of Biological Chemistry. 1997;272(32):19633–19636. doi: 10.1074/jbc.272.32.19633.
    1. Cheng K. C., Cahill D. S., Kasai H., Nishimura S., Loeb L. A. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G–T and A–C substitutions. The Journal of Biological Chemistry. 1992;267(1):166–172.
    1. Serdar M., Sertoglu E., Uyanik M., et al. Comparison of 8-hydroxy-2′-deoxyguanosine (8-oxodG) levels using mass spectrometer and urine albumin creatinine ratio as a predictor of development of diabetic nephropathy. Free Radical Research. 2012;46(10):1291–1295. doi: 10.3109/10715762.2012.710902.
    1. Broedbaek K., Weimann A., Stovgaard E. S., Poulsen H. E. Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine as a biomarker in type 2 diabetes. Free Radical Biology & Medicine. 2011;51(8):1473–1479. doi: 10.1016/j.freeradbiomed.2011.07.007.
    1. Siomek A., Tujakowski J., Gackowski D., et al. Severe oxidatively damaged DNA after cisplatin treatment of cancer patients. International Journal of Cancer. 2006;119(9):2228–2230. doi: 10.1002/ijc.22088.
    1. Di Minno A., Turnu L., Porro B., et al. 8-Hydroxy-2-deoxyguanosine levels and heart failure: a systematic review and meta-analysis of the literature. Nutrition, Metabolism, and Cardiovascular Diseases. 2017;27(3):201–208. doi: 10.1016/j.numecd.2016.10.009.
    1. Di Minno A., Turnu L., Porro B., et al. 8-Hydroxy-2-deoxyguanosine levels and cardiovascular disease: a systematic review and meta-analysis of the literature. Antioxidants & Redox Signaling. 2016;24(10):548–555. doi: 10.1089/ars.2015.6508.
    1. Evans M. D., Olinski R., Loft S., Cooke M. S. Toward consensus in the analysis of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine as a noninvasive biomarker of oxidative stress. FASEB Journal. 2010;24(4):1249–1260. doi: 10.1096/fj.09-147124.
    1. Delanty N., Reilly M. P., Pratico D., et al. 8-epi PGF2α generation during coronary reperfusion. A potential quantitative marker of oxidant stress in vivo. Circulation. 1997;95(11):2492–2499. doi: 10.1161/01.CIR.95.11.2492.
    1. Andreoli R., Manini P., De Palma G., et al. Quantitative determination of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine, 8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydroguanosine, and their non-oxidized forms: daily concentration profile in healthy volunteers. Biomarkers. 2010;15(3):221–231. doi: 10.3109/13547500903434501.
    1. Bogdanov M. B., Beal M. F., McCabe D. R., Griffin R. M., Matson W. R. A carbon column-based liquid chromatography electrochemical approach to routine 8-hydroxy-2′-deoxyguanosine measurements in urine and other biologic matrices: a one-year evaluation of methods. Free Radical Biology & Medicine. 1999;27(5-6):647–666. doi: 10.1016/S0891-5849(99)00113-6.
    1. Cavalca V., Minardi F., Scurati S., et al. Simultaneous quantification of 8-iso-prostaglandin-F2α and 11-dehydro thromboxane B2 in human urine by liquid chromatography-tandem mass spectrometry. Analytical Biochemistry. 2010;397(2):168–174. doi: 10.1016/j.ab.2009.10.014.
    1. U.D.o.H.a.H.S. Food and Drug Administration F. Guidance for Industry: Bioanalytical Method Validation. 2013. .
    1. Matuszewski B. K., Constanzer M. L., Chavez-Eng C. M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Analytical Chemistry. 2003;75(13):3019–3030. doi: 10.1021/ac020361s.
    1. Barregard L., Moller P., Henriksen T., et al. Human and methodological sources of variability in the measurement of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine. Antioxidants & Redox Signaling. 2013;18(18):2377–2391. doi: 10.1089/ars.2012.4714.
    1. Hu C. W., Wu M. T., Chao M. R., et al. Comparison of analyses of urinary 8-hydroxy-2′-deoxyguanosine by isotope-dilution liquid chromatography with electrospray tandem mass spectrometry and by enzyme-linked immunosorbent assay. Rapid Communications in Mass Spectrometry. 2004;18(4):505–510. doi: 10.1002/rcm.1367.
    1. Rossner P., Jr., Mistry V., Singh R., Sram R. J., Cooke M. S. Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine values determined by a modified ELISA improves agreement with HPLC-MS/MS. Biochemical and Biophysical Research Communications. 2013;440(4):725–730. doi: 10.1016/j.bbrc.2013.09.133.
    1. Xiang F., Shuanglun X., Jingfeng W., et al. Association of serum 8-hydroxy-2′-deoxyguanosine levels with the presence and severity of coronary artery disease. Coronary Artery Disease. 2011;22(4):223–227. doi: 10.1097/MCA.0b013e328344b615.
    1. Gackowski D., Kruszewski M., Jawien A., Ciecierski M., Olinski R. Further evidence that oxidative stress may be a risk factor responsible for the development of atherosclerosis. Free Radical Biology & Medicine. 2001;31(4):542–547. doi: 10.1016/S0891-5849(01)00614-1.
    1. Kaya Y., Cebi A., Soylemez N., Demir H., Alp H. H., Bakan E. Correlations between oxidative DNA damage, oxidative stress and coenzyme Q10 in patients with coronary artery disease. International Journal of Medical Sciences. 2012;9(8):621–626. doi: 10.7150/ijms.4768.
    1. Arao K., Yasu T., Umemoto T., et al. Effects of pitavastatin on fasting and postprandial endothelial function and blood rheology in patients with stable coronary artery disease. Circulation Journal. 2009;73(8):1523–1530. doi: 10.1253/circj.CJ-08-0917.
    1. Jaruga P., Rozalski R., Jawien A., Migdalski A., Olinski R., Dizdaroglu M. DNA damage products (5'R)- and (5′S)-8,5′-cyclo-2′-deoxyadenosines as potential biomarkers in human urine for atherosclerosis. Biochemistry. 2012;51(9):1822–1824. doi: 10.1021/bi201912c.
    1. Martinet W., Knaapen M. W., De Meyer G. R., Herman A. G., Kockx M. M. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation. 2002;106(8):927–932. doi: 10.1161/01.CIR.0000026393.47805.21.
    1. Botto N., Masetti S., Petrozzi L., et al. Elevated levels of oxidative DNA damage in patients with coronary artery disease. Coronary Artery Disease. 2002;13(5):269–274. doi: 10.1097/00019501-200208000-00004.
    1. Vassalle C., Petrozzi L., Botto N., Andreassi M. G., Zucchelli G. C. Oxidative stress and its association with coronary artery disease and different atherogenic risk factors. Journal of Internal Medicine. 2004;256(4):308–315. doi: 10.1111/j.1365-2796.2004.01373.x.
    1. Kevin L. G., Novalija E., Stowe D. F. Reactive oxygen species as mediators of cardiac injury and protection: the relevance to anesthesia practice. Anesthesia and Analgesia. 2005;101(5):1275–1287. doi: 10.1213/01.ANE.0000180999.81013.D0.
    1. Basili S., Tanzilli G., Mangieri E., et al. Intravenous ascorbic acid infusion improves myocardial perfusion grade during elective percutaneous coronary intervention: relationship with oxidative stress markers. JACC Cardiovascular Interventions. 2010;3(2):221–229. doi: 10.1016/j.jcin.2009.10.025.
    1. Harman S. M., Liang L., Tsitouras P. D., et al. Urinary excretion of three nucleic acid oxidation adducts and isoprostane F2α measured by liquid chromatography-mass spectrometry in smokers, ex-smokers, and nonsmokers. Free Radical Biology & Medicine. 2003;35(10):1301–1309. doi: 10.1016/j.freeradbiomed.2003.07.003.
    1. Yamano Y., Miyakawa S., Nakadate T. Association of arteriosclerosis index and oxidative stress markers in school children. Pediatrics International. 2015;57(3):449–454. doi: 10.1111/ped.12545.
    1. England T., Beatty E., Rehman A., et al. The steady-state levels of oxidative DNA damage and of lipid peroxidation (F2-isoprostanes) are not correlated in healthy human subjects. Free Radical Research. 2000;32(4):355–362. doi: 10.1080/10715760000300351.
    1. Lee T. M., Chou T. F., Tsai C. H. Association of pravastatin and left ventricular mass in hypercholesterolemic patients: role of 8-iso-prostaglandin F2α formation. Journal of Cardiovascular Pharmacology. 2002;40(6):868–874. doi: 10.1097/00005344-200212000-00007.
    1. Rodrigo R., Prat H., Passalacqua W., Araya J., Guichard C., Bachler J. P. Relationship between oxidative stress and essential hypertension. Hypertension Research. 2007;30(12):1159–1167. doi: 10.1291/hypres.30.1159.
    1. Lowe F. J., Gregg E. O., McEwan M. Evaluation of biomarkers of exposure and potential harm in smokers, former smokers and never-smokers. Clinical Chemistry and Laboratory Medicine. 2009;47(3):311–320. doi: 10.1515/CCLM.2009.069.
    1. Devangelio E., Santilli F., Formoso G., et al. Soluble RAGE in type 2 diabetes: association with oxidative stress. Free Radical Biology & Medicine. 2007;43(4):511–518. doi: 10.1016/j.freeradbiomed.2007.03.015.

Source: PubMed

3
Suscribir