Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington's disease: zQ175

Liliana B Menalled, Andrea E Kudwa, Sam Miller, Jon Fitzpatrick, Judy Watson-Johnson, Nicole Keating, Melinda Ruiz, Richard Mushlin, William Alosio, Kristi McConnell, David Connor, Carol Murphy, Steve Oakeshott, Mei Kwan, Jose Beltran, Afshin Ghavami, Dani Brunner, Larry C Park, Sylvie Ramboz, David Howland, Liliana B Menalled, Andrea E Kudwa, Sam Miller, Jon Fitzpatrick, Judy Watson-Johnson, Nicole Keating, Melinda Ruiz, Richard Mushlin, William Alosio, Kristi McConnell, David Connor, Carol Murphy, Steve Oakeshott, Mei Kwan, Jose Beltran, Afshin Ghavami, Dani Brunner, Larry C Park, Sylvie Ramboz, David Howland

Abstract

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor, cognitive and psychiatric manifestations. Since the mutation responsible for the disease was identified as an unstable expansion of CAG repeats in the gene encoding the huntingtin protein in 1993, numerous mouse models of HD have been generated to study disease pathogenesis and evaluate potential therapeutic approaches. Of these, knock-in models best mimic the human condition from a genetic perspective since they express the mutation in the appropriate genetic and protein context. Behaviorally, however, while some abnormal phenotypes have been detected in knock-in mouse models, a model with an earlier and more robust phenotype than the existing models is required. We describe here for the first time a new mouse line, the zQ175 knock-in mouse, derived from a spontaneous expansion of the CAG copy number in our CAG 140 knock-in colony [1]. Given the inverse relationship typically observed between age of HD onset and length of CAG repeat, since this new mouse line carries a significantly higher CAG repeat length it was expected to be more significantly impaired than the parent line. Using a battery of behavioral tests we evaluated both heterozygous and homozygous zQ175 mice. Homozygous mice showed motor and grip strength abnormalities with an early onset (8 and 4 weeks of age, respectively), which were followed by deficits in rotarod and climbing activity at 30 weeks of age and by cognitive deficits at around 1 year of age. Of particular interest for translational work, we also found clear behavioral deficits in heterozygous mice from around 4.5 months of age, especially in the dark phase of the diurnal cycle. Decreased body weight was observed in both heterozygotes and homozygotes, along with significantly reduced survival in the homozygotes. In addition, we detected an early and significant decrease of striatal gene markers from 12 weeks of age. These data suggest that the zQ175 knock-in line could be a suitable model for the evaluation of therapeutic approaches and early events in the pathogenesis of HD.

Conflict of interest statement

Competing Interests: PsychoGenics conducted the research through a fee-for-service agreement for CHDI Foundation. LP and DH are employed by CHDI Management, Inc., as advisors to CHDI Foundation, Inc. LM, AK, SM, JF, JWJ, NK, MR, RM, WA, KM, DC, CM, SO, MK, JB, AG, DB, and SR are/were employed by PsychoGenics. There are no patents, products in development or marketed products to declare. The authors fully adhere to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

Figures

Figure 1. Body weight (mean ± SEM)…
Figure 1. Body weight (mean ± SEM) of wild type, heterozygous and homozygous mice as a function of age for female (A) and male (B) mice.
Figure 2. Kaplan-Meier survival curve in WT…
Figure 2. Kaplan-Meier survival curve in WT vs. homozygous mice as a function of genotype and age.
Figure 3. Total distance covered in the…
Figure 3. Total distance covered in the Open Field per 5 minute bin (mean ± SEM) of wild type, heterozygous and homozygous mice as a function of age and test time during the dark phase of the diurnal cycle.
Figure 4. Rearing frequency in the Open…
Figure 4. Rearing frequency in the Open Field (mean ± SEM) of wild type, heterozygous and homozygous mice as a function of age during the dark phase of the diurnal cycle.
Figure 5. Latency to fall from the…
Figure 5. Latency to fall from the rotarod (mean ± SEM) of wild type, heterozygous and homozygous mice as a function of age during the dark phase of the diurnal cycle.
Figure 6. Grip strength (mean ± SEM)…
Figure 6. Grip strength (mean ± SEM) of wild type, heterozygous and homozygous mice as a function of age during the light phase of the diurnal cycle.
Figure 7. Proportion of mice climbing in…
Figure 7. Proportion of mice climbing in the rearing climbing assay in the wild type, heterozygous and homozygous group during the dark phase of the diurnal cycle.
Figure 8. Percent correct choices for WT,…
Figure 8. Percent correct choices for WT, heterozygous and homozygous mice per test day during acquisition of the procedural swim tank at 58 weeks of age.
Figure 9. Overall visit frequency during PhenoCube…
Figure 9. Overall visit frequency during PhenoCube testing at 16 weeks, broken down into 1 hour bins (A) and summarized across the two complete light/dark periods from lights-on on day 2 (B).
Figure 10. Overall visit frequency during PhenoCube…
Figure 10. Overall visit frequency during PhenoCube testing at 37 weeks, broken down into 1 hour bins (A) and summarized across the two complete light/dark periods from lights-on on day 2 (B).
Figure 11. The relative striatal mRNA expression…
Figure 11. The relative striatal mRNA expression level of wildtype (WT), heterozyous (HET) and homozygous (HOMO) zQ175 mice at 12, 18 and 41 weeks of age, analyzed by qPCR.
Relative mRNA levels are normalized to age matched and gender matched wild type controls. For normalization, the geometric mean of UBbc, Eif4a2 and ATP5B was used. Gender separation was performed with the 12 and 41 week groups. *, p
All figures (11)

References

    1. Menalled LB, Sison JD, Dragatsis I, Zeitlin S, Chesselet MF (2003) Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J Comp Neurol 465: 11–26.
    1. Roos RA, Hermans J, Vegter-van der Vlis M, van Ommen GJ, Bruyn GW (1993) Duration of illness in Huntington’s disease is not related to age at onset. J Neurol Neurosurg Psychiatry 56: 98–100.
    1. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, et al. (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44: 559–577.
    1. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72: 971–983.
    1. Gray M, Shirasaki DI, Cepeda C, Andre VM, Wilburn B, et al. (2008) Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci 28: 6182–6195.
    1. Hickey MA, Chesselet MF (2003) The use of transgenic and knock-in mice to study Huntington’s disease. Cytogenet Genome Res 100: 276–286.
    1. Menalled LB (2005) Knock-in mouse models of Huntington’s disease. NeuroRx 2: 465–470.
    1. Heng MY, Duong DK, Albin RL, Tallaksen-Greene SJ, Hunter JM, et al. (2010) Early autophagic response in a novel knock-in model of Huntington disease. Hum Mol Genet 19: 3702–3720.
    1. White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, et al. (1997) Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat Genet 17: 404–410.
    1. Wheeler VC, White JK, Gutekunst CA, Vrbanac V, Weaver M, et al. (2000) Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum Mol Genet 9: 503–513.
    1. Lin CH, Tallaksen-Greene S, Chien WM, Cearley JA, Jackson WS, et al. (2001) Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Hum Mol Genet 10: 137–144.
    1. Heng MY, Tallaksen-Greene SJ, Detloff PJ, Albin RL (2007) Longitudinal evaluation of the Hdh(CAG)150 knock-in murine model of Huntington’s disease. J Neurosci 27: 8989–8998.
    1. Rising AC, Xu J, Carlson A, Napoli VV, Denovan-Wright EM, et al. (2011) Longitudinal behavioral, cross-sectional transcriptional and histopathological characterization of a knock-in mouse model of Huntington’s disease with 140 CAG repeats. Exp Neurol 228: 173–182.
    1. Hickey MA, Kosmalska A, Enayati J, Cohen R, Zeitlin S, et al. (2008) Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in Huntington’s disease mice. Neuroscience 157: 280–295.
    1. Brooks S, Higgs G, Jones L, Dunnett SB (2010) Longitudinal analysis of the behavioural phenotype in Hdh((CAG)150) Huntington’s disease knock-in mice. Brain Res Bull.
    1. Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, et al. (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4: 398–403.
    1. Lione LA, Carter RJ, Hunt MJ, Bates GP, Morton AJ, et al. (1999) Selective discrimination learning impairments in mice expressing the human Huntington’s disease mutation. J Neurosci 19: 10428–10437.
    1. Singer J (1998) Using SAS PROC MIXED to fit multilevel models,hierarchical models, and individuals growth models. Journal of Educational and Behavioral Statistics 24: 323–355.
    1. Benn CL, Fox H, Bates GP (2008) Optimisation of region-specific reference gene selection and relative gene expression analysis methods for pre-clinical trials of Huntington’s disease. Mol Neurodegener 3: 17.
    1. Sanberg PR, Fibiger HC, Mark RF (1981) Body weight and dietary factors in Huntington’s disease patients compared with matched controls. Med J Aust 1: 407–409.
    1. Menalled LB, Chesselet MF (2002) Mouse models of Huntington’s disease. Trends Pharmacol Sci 23: 32–39.
    1. von Horsten S, Schmitt I, Nguyen HP, Holzmann C, Schmidt T, et al. (2003) Transgenic rat model of Huntington’s disease. Hum Mol Genet 12: 617–624.
    1. Lloret A, Dragileva E, Teed A, Espinola J, Fossale E, et al. (2006) Genetic background modifies nuclear mutant huntingtin accumulation and HD CAG repeat instability in Huntington’s disease knock-in mice. Hum Mol Genet 15: 2015–2024.
    1. Woodman B, Butler R, Landles C, Lupton MK, Tse J, et al. (2007) The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Res Bull 72: 83–97.
    1. Fellows S, Schwarz M, Schaffrath C, Domges F, Noth J (1997) Disturbances of precision grip in Huntington’s disease. Neurosci Lett 226: 103–106.
    1. Gordon AM, Quinn L, Reilmann R, Marder K (2000) Coordination of prehensile forces during precision grip in Huntington’s disease. Exp Neurol 163: 136–148.
    1. Menalled L, El-Khodor BF, Patry M, Suarez-Farinas M, Orenstein SJ, et al. (2009) Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis 35: 319–336.
    1. Hockly E, Cordery PM, Woodman B, Mahal A, van Dellen A, et al. (2002) Environmental enrichment slows disease progression in R6/2 Huntington’s disease mice. Ann Neurol 51: 235–242.
    1. Trembath MK, Horton ZA, Tippett L, Hogg V, Collins VR, et al. (2010) A retrospective study of the impact of lifestyle on age at onset of Huntington disease. Mov Disord 25: 1444–1450.
    1. van Dellen A, Blakemore C, Deacon R, York D, Hannan AJ (2000) Delaying the onset of Huntington’s in mice. Nature 404: 721–722.
    1. Brooks SP, Betteridge H, Trueman RC, Jones L, Dunnett SB (2006) Selective extra-dimensional set shifting deficit in a knock-in mouse model of Huntington’s disease. Brain Res Bull 69: 452–457.
    1. Murphy C, Paterson N, Oakeshott S, He D, Alosio B, et al. (In preparation) Impairments in simple discrimination reversal and intra-dimensional shift in the BAC HD and z_Q175 mouse models of Huntington’s disease.
    1. Morton AJ, Skillings E, Bussey TJ, Saksida LM (2006) Measuring cognitive deficits in disabled mice using an automated interactive touchscreen system. Nat Methods 3: 767.
    1. Albin RL, Qin Y, Young AB, Penney JB, Chesselet MF (1991) Preproenkephalin messenger RNA-containing neurons in striatum of patients with symptomatic and presymptomatic Huntington’s disease: an in situ hybridization study. Ann Neurol 30: 542–549.
    1. Augood SJ, Faull RL, Emson PC (1997) Dopamine D1 and D2 receptor gene expression in the striatum in Huntington’s disease. Ann Neurol 42: 215–221.
    1. Bibb JA, Yan Z, Svenningsson P, Snyder GL, Pieribone VA, et al. (2000) Severe deficiencies in dopamine signaling in presymptomatic Huntington’s disease mice. Proc Natl Acad Sci U S A 97: 6809–6814.
    1. Chan EY, Luthi-Carter R, Strand A, Solano SM, Hanson SA, et al. (2002) Increased huntingtin protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington’s disease. Hum Mol Genet 11: 1939–1951.
    1. Denovan-Wright EM, Robertson HA (2000) Cannabinoid receptor messenger RNA levels decrease in a subset of neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington’s disease mice. Neuroscience 98: 705–713.
    1. Hebb AL, Robertson HA, Denovan-Wright EM (2004) Striatal phosphodiesterase mRNA and protein levels are reduced in Huntington’s disease transgenic mice prior to the onset of motor symptoms. Neuroscience 123: 967–981.
    1. Hu H, McCaw EA, Hebb AL, Gomez GT, Denovan-Wright EM (2004) Mutant huntingtin affects the rate of transcription of striatum-specific isoforms of phosphodiesterase 10A. Eur J Neurosci 20: 3351–3363.
    1. Luthi-Carter R, Strand A, Peters NL, Solano SM, Hollingsworth ZR, et al. (2000) Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum Mol Genet 9: 1259–1271.
    1. McCaw EA, Hu H, Gomez GT, Hebb AL, Kelly ME, et al. (2004) Structure, expression and regulation of the cannabinoid receptor gene (CB1) in Huntington’s disease transgenic mice. Eur J Biochem 271: 4909–4920.
    1. Menalled L, Zanjani H, MacKenzie L, Koppel A, Carpenter E, et al. (2000) Decrease in striatal enkephalin mRNA in mouse models of Huntington’s disease. Exp Neurol 162: 328–342.
    1. Richfield EK, Maguire-Zeiss KA, Cox C, Gilmore J, Voorn P (1995) Reduced expression of preproenkephalin in striatal neurons from Huntington’s disease patients. Ann Neurol 37: 335–343.
    1. Squitieri F, Gellera C, Cannella M, Mariotti C, Cislaghi G, et al. (2003) Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course. Brain 126: 946–955.

Source: PubMed

3
Suscribir