Antioxidant and Ex Vivo Immune System Regulatory Properties of Boswellia serrata Extracts

Daniela Beghelli, Gloria Isani, Paola Roncada, Giulia Andreani, Onelia Bistoni, Martina Bertocchi, Giulio Lupidi, Alessia Alunno, Daniela Beghelli, Gloria Isani, Paola Roncada, Giulia Andreani, Onelia Bistoni, Martina Bertocchi, Giulio Lupidi, Alessia Alunno

Abstract

Boswellia serrata (BS) is an important traditional medicinal plant that currently represents an interesting topic for pharmaceutical research since it possesses several pharmacological properties (e.g., anti-inflammatory, antimicrobial, and antitumour). The safety and versatility of this dietary supplement should allow for its use in numerous pathological conditions; however the quality of the extracts needs to be standardized to increase the clinical success rate resulting from its use. In the present study, different commercially available B. serrata extracts were employed to compare their AKBA content and in vitro antioxidant power. Furthermore, their ability to modulate the immune system regulatory properties was investigated. Our results showed that the AKBA content varied from 3.83 ± 0.10 to 0.03 ± 0.004%, with one sample in which it was not detectable. The highest antioxidant power and phenolic content were shown by the same extract, which also exhibited the highest AKBA concentration. Finally, the BS extracts showed the ability to influence the regulatory and effector T-cell compartments. Our results suggest that frankincense should be further investigated for its promising potentiality to modulate not only inflammation/oxidative stress but also immune dysregulation, but attention should be paid to the composition of the commercial extracts.

Figures

Figure 1
Figure 1
UV detection at 254 nm (a) for UV-active boswellic acids. Chromatograms after dyeing with anisaldehyde (b). Rf values are reported for the most relevant spots. A–F: six different powder extracts of Boswellia serrata gum resin; S: 3-acetyl-11-keto-beta-boswellic-acid (AKBA) analytical standard (Rf = 0.29).
Figure 2
Figure 2
Chromatograms of Boswellia serrata extracts (BS) after HPLC-DAD analysis. BS (A)–(F) extracts were diluted 1 : 400 in methanol, whereas, BS (G) extract was diluted 1 : 20 in methanol. The chromatogram of the AKBA analytical standard is also reported (H). The absorbance (mAU) is reported on the y-axis, wavelength (nm) on x-axis, and the retention time (minutes) on the z-axis.
Figure 3
Figure 3
Boswellia serrata (BS) extract (A or G) effects on lymphocyte proliferation assay. Data are shown as mean ± SEM of seven independent experiments. PBMCs were cultured with phytohemagglutinin (PHA; graphics (a) and (c)) or pokeweed mitogens (PWM; graphics (b) and (d)) and stained with carboxyfluorescein diacetate succinimidyl ester cell tracer (CFSE). The lymphocyte proliferation index (LPI) was calculated as reported in the text. A,BDifferent letters for p < 0.05. n.s. = not significant.
Figure 4
Figure 4
Boswellia serrata (BS) extract (A or G) effects on Treg (CD4+CD25+FOXP3+ cells), Th1 lymphocyte (INFγ+ cells), and Th17 cell (IL-17+) responses. Data are shown as mean ± SEM of seven independent experiments. PBMCs were cultured in absence (controls, C; graphics (a), (b), and (c)) or presence of mitogen (phytohemagglutinin, PHA; graphics (d), (e), and (f)) and with/without BS extracts. A,BDifferent letters for p < 0.05. n.s. = not significant.

References

    1. Etzel R. Special extract of Boswellia serrata (H15) in the treatment of rheumatoid arthritis. Phytomedicine. 1996;3(1):91–94. doi: 10.1016/s0944-7113(96)80019-5.
    1. Kimmatkar N., Thawani V., Hingorani L., Khiyani R. Efficacy and tolerability of Boswellia serrata extract in treatment of osteoarthritis of knee—a randomized double blind placebo controlled trial. Phytomedicine. 2003;10(1):3–7. doi: 10.1078/094471103321648593.
    1. Abbas A. K., Lichtman A., Pillai S. Cellular and Molecular Immunology. 6th. Hong Kong, China: Elsevier; 2010.
    1. Biswas S. K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxidative Medicine and Cellular Longevity. 2016;2016:9. doi: 10.1155/2016/5698931.5698931
    1. Salzano S., Checconi P., Hanschmann E.-M., et al. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(33):12157–12162. doi: 10.1073/pnas.1401712111.
    1. Collins T. Acute and chronic inflammation. In: Cotran R. S., Kumar V., Collins T., editors. Robbins Pathologic Basis of Disease. Philadelphia, Pa, USA: W. Saunders; 1999. pp. 50–88.
    1. Sharma M. L., Khajuria A., Kaul A., Singh S., Singh G. B., Atal C. K. Effect of salai guggal ex-Boswellia serrata on cellular and humoral immune responses and leucocyte migration. Agents and Actions. 1988;24(1-2):161–164.
    1. Sharma M. L., Bani S., Singh G. B. Anti-arthritic activity of boswellic acids in bovine serum albumin (BSA)-induced arthritis. International Journal of Immunopharmacology. 1989;11(6):647–652. doi: 10.1016/0192-0561(89)90150-1.
    1. Wagner H. Search for new plant constituents with potential antiphlogistic and antiallergic activity. Planta Medica. 1989;55(3):235–241. doi: 10.1055/s-2006-961992.
    1. Ammon H. P. T., Mack T., Singh G. B., Safayhi H. Inhibition of leukotriene B4 formation in rat peritoneal neutrophils by an ethanolic extract of the gum resin exudate of Boswellia serrata. Planta Medica. 1991;57(3):203–207. doi: 10.1055/s-2006-960074.
    1. Safayhi H., Mack T., Sabieraj J., Anazodo M. I., Subramanian L. R., Ammon H. P. T. Boswellic acids: novel, specific, nonredox inhibitors of 5-lipoxygenase. Journal of Pharmacology and Experimental Therapeutics. 1992;261(3):1143–1146.
    1. Cuaz-Pérolin C., Billiet L., Baugé E., et al. Antiinflammatory and antiatherogenic effects of the NF-κB inhibitor acetyl-11-Keto-β-boswellic acid in LPS-challenged ApoE-/- mice. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28(2):272–277. doi: 10.1161/ATVBAHA.107.155606.
    1. Umar S., Umar K., Sarwar A. H. M. G., et al. Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis. Phytomedicine. 2014;21(6):847–856. doi: 10.1016/j.phymed.2014.02.001.
    1. Ammon H. P. T. Modulation of the immune system by Boswellia serrata extracts and boswellic acids. Phytomedicine. 2010;17(11):862–867. doi: 10.1016/j.phymed.2010.03.003.
    1. Gayathri B., Manjula N., Vinaykumar K. S., Lakshmi B. S., Balakrishnan A. Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNFα, IL-1β, NO and MAP kinases. International Immunopharmacology. 2007;7(4):473–482. doi: 10.1016/j.intimp.2006.12.003.
    1. Setti L., Zanichelli D. Bioliquefaction as a bio-refinery's approach for the production of natural bioactive compounds for functional cosmetics. In: Morselli L., Passarini F., Vassura I., editors. Waste Recovery: Strategies, Techniques and Applications in Europe. Milano, Italy: Franco Angeli; 2009. pp. 122–128.
    1. Singleton V. L., Rossi J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 1965;16:144–158.
    1. Srinivasan R., Chandrasekar M. J. N., Nanjan M. J., Suresh B. Antioxidant activity of Caesalpinia digyna root. Journal of Ethnopharmacology. 2007;113(2):284–291. doi: 10.1016/j.jep.2007.06.006.
    1. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 1999;26(9-10):1231–1237. doi: 10.1016/S0891-5849(98)00315-3.
    1. Müller L., Fröhlich K., Böhm V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chemistry. 2011;129(1):139–148. doi: 10.1016/j.foodchem.2011.04.045.
    1. Abdel-Tawab M., Werz O., Schubert-Zsilavecz M. Boswellia serrata: an overall assessment of in vitro, preclinical, pharmacokinetic and clinical data. Clinical Pharmacokinetics. 2011;50(6):349–369. doi: 10.2165/11586800-000000000-00000.
    1. Liu F. C., Hoyt D. B., Coimbra R., Junger W. G. Proliferation assays with human, rabbit, rat, and mouse lymphocytes. In Vitro Cellular and Developmental Biology—Animal. 1996;32(9):520–523. doi: 10.1007/bf02722976.
    1. Caprioli G., Alunno A., Beghelli D., et al. Polar constituents and biological activity of the berry-like fruits from Hypericum androsaemum L. Frontiers in Plant Science. 2016;7, article no. 232 doi: 10.3389/fpls.2016.00232.
    1. Alunno A., Montanucci P., Bistoni O., et al. In vitro immunomodulatory effects of microencapsulated umbilical cord Wharton jelly-derived mesenchymal stem cells in primary Sjögren's syndrome. Rheumatology. 2015;54(1):163–168. doi: 10.1093/rheumatology/keu292.
    1. Graph-Pad Software. GraphPad Prism Version 5.01 for Windows. San Diego, Calif, USA: Graph-Pad Software; 2007.
    1. Moussaieff A., Mechoulam R. Boswellia resin: from religious ceremonies to medical uses; a review of in-vitro, in-vivo and clinical trials. Journal of Pharmacy and Pharmacology. 2009;61(10):1281–1293. doi: 10.1211/jpp/61.10.0003.
    1. Azemi M. E., Namjoyan F., Khodayar M. J., Ahmadpour F., Padok A. D., Panahi M. The antioxidant capacity and anti-diabetic effect of Boswellia serrata triana and planch aqueous extract in fertile female diabetic rats and the possible effects on reproduction and histological changes in the liver and kidneys. Jundishapur Journal of Natural Pharmaceutical Products. 2012;7(4):168–175. doi: 10.5812/jjnpp.6755.
    1. Florean C., Diederich M. Redox regulation—natural compound as regulators of inflammation signaling. Biochemical Pharmacology. 2012;84(10):1223–1224. doi: 10.1016/j.bcp.2012.07.001.
    1. Gupta M., Rout P. K., Misra L. N., et al. Chemical composition and bioactivity of Boswellia serrata Roxb. essential oil in relation to geographical variation. Plant Biosystems. 2016:1–7. doi: 10.1080/11263504.2016.1187681.
    1. Catanzaro D., Rancan S., Orso G., et al. Boswellia serrata preserves intestinal epithelial barrier from oxidative and inflammatory damage. PLoS ONE. 2015;10(5) doi: 10.1371/journal.pone.0125375.e0125375
    1. Singh H. P., Yadav I. K., Chandra D., Jain D. A. In vitro antioxidant and free radical scavenging activity of different extracts of Boerhavia diffusa and Boswellia serrata. International Journal of Pharma Sciences and Research. 2012;3(11):503–511.
    1. Barik C. S., Kanungo S. K., Tripathy N. K., Panda J., Sahoo B. Evaluation of free radical scavenging activity of polyherbal formulations containing four different plant extracts. Der Pharmacia Lettre. 2016;8(2):496–501.
    1. Meins J., Artaria C., Riva A., Morazzoni P., Schubert-Zsilavecz M., Abdel-Tawab M. Survey on the quality of the top-selling european and american botanical dietary supplements containing boswellic acids. Planta Medica. 2016;82(6):573–579. doi: 10.1055/s-0042-103497.
    1. Frank A., Unger M. Analysis of frankincense from various Boswellia species with inhibitory activity on human drug metabolising cytochrome P450 enzymes using liquid chromatography mass spectrometry after automated on-line extraction. Journal of Chromatography A. 2006;1112(1-2):255–262. doi: 10.1016/j.chroma.2005.11.116.
    1. Mannino G., Occhipinti A., Maffei M. Quantitative determination of 3-O-Acetyl-11-Keto-β Boswellic Acid (AKBA) and other Boswellic acids in Boswellia sacra Flueck (syn. B. carteri Birdw) and Boswellia serrata Roxb. Molecules. 2016;21(10, article 1329) doi: 10.3390/molecules21101329.
    1. Paul M., Brüning G., Bergmann J., Jauch J. A thin-layer chromatography method for the identification of three different olibanum resins (Boswellia serrata, Boswellia papyrifera and Boswellia carterii, respectively, Boswellia sacra) Phytochemical Analysis. 2012;23(2):184–189. doi: 10.1002/pca.1341.
    1. Kohoude M. J., Gbaguidi F., Ayedoun P. M., Cazaux S., Bouajila J. Chemical composition and biological activities of extracts and essential oil of Boswellia dalzielii leaves. Pharmaceutical Biology. 2017;55(1):33–42. doi: 10.1080/13880209.2016.1226356.
    1. Sharma M. L., Kaul A., Khajuria A., Singh S., Singh G. B. Immunomodulatory activity of boswellic acids (Pentacyclic triterpene acids) from Boswellia serrata. Phytotherapy Research. 1996;10(2):107–112. doi: 10.1002/(sici)1099-1573(199603)10:2<107::aid-ptr780>;2-3.
    1. Badria F. A., Mikhaeil B. R., Maatooq G. T., Amer M. M. A. Immunomodulatory triterpenoids from the oleogum resin of Boswellia carterii Birdwood. Zeitschrift fur Naturforschung. Section C Journal of Biosciences. 2003;58(7-8):505–516.
    1. Abbas A. K., Murphy K. M., Sher A. Functional diversity of helper T lymphocytes. Nature. 1996;383(6603):787–793. doi: 10.1038/383787a0.
    1. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunology. 2005;6(4):345–352. doi: 10.1038/ni1178.
    1. Dolff S., Bijl M., Huitema M. G., Limburg P. C., Kallenberg C. G. M., Abdulahad W. H. Disturbed Th1, Th2, Th17 and T reg balance in patients with systemic lupus erythematosus. Clinical Immunology. 2011;141(2):197–204. doi: 10.1016/j.clim.2011.08.005.
    1. Stockinger B., Veldhoen M. Differentiation and function of Th17 T cells. Current Opinion in Immunology. 2007;19(3):281–286. doi: 10.1016/j.coi.2007.04.005.
    1. Sharma M. D., Hou D.-Y., Liu Y., et al. Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood. 2009;113(24):6102–6111. doi: 10.1182/blood-2008-12-195354.
    1. Mitsdoerffer M., Lee Y., Jäger A., et al. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(32):14292–14297. doi: 10.1073/pnas.1009234107.
    1. Hartmann R. M., Martins M. I. M., Tieppo J., Fillmann H. S., Marroni N. P. Effect of Boswellia serrata on antioxidant status in an experimental model of colitis rats induced by acetic acid. Digestive Diseases and Sciences. 2012;57(8):2038–2044. doi: 10.1007/s10620-012-2134-3.
    1. Alunno A., Carubbi F., Bistoni O., et al. T regulatory and T helper 17 cells in primary Sjögren's syndrome: Facts and perspectives. Mediators of Inflammation. 2015;2015:10. doi: 10.1155/2015/243723.243723

Source: PubMed

3
Suscribir