Does larch arabinogalactan enhance immune function? A review of mechanistic and clinical trials

Carine Dion, Eric Chappuis, Christophe Ripoll, Carine Dion, Eric Chappuis, Christophe Ripoll

Abstract

The common cold is a viral infection with important economic burdens in Western countries. The research and development of nutritional solutions to reduce the incidence and severity of colds today is a major focus of interest, and larch arabinogalactan seems to be a promising supportive agent. Arabinogalactan has been consumed by humans for thousands of years and is found in a variety of common vegetables as well as in medicinal herbs. The major commercial sources of this long, densely branched, high-molecular-weight polysaccharide are North American larch trees. The aim of this article is to review the immunomodulatory effects of larch arabinogalactan derived from Larix laricina and Larix occidentalis (North American Larix species) and more specifically its role in the resistance to common cold infections. In cell and animal models, larch arabinogalactan is capable of enhancing natural killer cells and macrophages as well as the secretion of pro-inflammatory cytokines. In humans a clinical study demonstrated that larch arabinogalactan increased the body's potential to defend against common cold infection. Larch arabinogalactan decreased the incidence of cold episodes by 23 %. Improvements of serum antigen-specific IgG and IgE response to Streptococcus pneumoniae and tetanus vaccination suggesting a B cell dependent mechanism have been reported in vaccination studies with larch arabinogalactan, while the absence of response following influenza vaccination suggests the involvement of a T cell dependent mechanism. These observations suggest a role for larch arabinogalactan in the improvement of cold infections, although the mode of action remains to be further explored. Different hypotheses can be envisaged as larch arabinogalactan can possibly act indirectly through microbiota-dependent mechanisms and/or have a direct effect on the immune system via the gut-associated lymphoid tissue (GALT).

Keywords: Common cold infections; Dietary fibers; Immune system; Larch arabinogalactan; Larix; Polysaccharides; ResistAid®; SCFA; Vaccine.

Figures

Fig. 1
Fig. 1
Proposed mechanisms of action of larch arabinogalactan on immune system
Fig. 2
Fig. 2
Larch arabinogalactan metabolism: simplified diagram of polysaccharide breakdown and the main routes of carbohydrate fermentation in the large intestine

References

    1. Heikkinen T, Jarvinen A. The common cold. Lancet. 2003;361(9351):51–9. doi: 10.1016/S0140-6736(03)12162-9.
    1. Bramley TJ, Lerner D, Sames M. Productivity losses related to the common cold. J Occup Environ Med. 2002;44(9):822–9. doi: 10.1097/00043764-200209000-00004.
    1. Roxas M, Jurenka J. Colds and influenza: a review of diagnosis and conventional, botanical, and nutritional considerations. Altern Med Rev. 2007;12(1):25–48.
    1. Jacobs S, Lamson D, St George K, Walsh T. Human rhinoviruses. Clin Microbiol Rev. 2013;26(1):135–62. doi: 10.1128/CMR.00077-12.
    1. Albers R, Antoine JM, Bourdet-Sicard R, Calder PC, Gleeson M, Lesourd B, et al. Markers to measure immunomodulation in human nutrition intervention studies. Br J Nutr. 2005;94(3):452–81. doi: 10.1079/BJN20051469.
    1. Kelly GS. Larch arabinogalactan: clinical relevance of a novel immune-enhancing polysaccharide. Altern Med Rev. 1999;4(2):96–103.
    1. D'Adamo P. Larch arabinogalactan. J Naturopath Med. 1996;4:32–9.
    1. Showalter A. Structure and function of plant cell wall proteins. Plant Cell. 1993;5:9–23. doi: 10.1105/tpc.5.1.9.
    1. Ellis M, Egelund J, Schultz C, Bacic A. Arabinogalactan-Proteins: Key regulators at the cell surface? J Plant Physiol. 2010;153:403–19. doi: 10.1104/pp.110.156000.
    1. Grube B, Stier H, Riede L, Gruenwald L. Tolerability of a proprietary larch arabinogalactan extract: a randomized, double-blind, placebo-controlled clinical trial in healthy subjects. Food Nutr Scie. 2012;3:1533–8. doi: 10.4236/fns.2012.311200.
    1. Goellner EM, Utermoehlen J, Kramer R, Classen B. Structure of arabinogalactan from Larix laricina and its reactivity with antibodies directed against type-II-arabinogalactans. Carbohydr Polymers. 2011;86(4):1739-44. .
    1. Kim LS, Burkholder PM, Waters RF. Effects of low-dose larch arabinogalactan from larix occidentalis: a randomized, double-blind, placebo-controlled pilot study. Complement Health Pract Rev. 2002;7(3):221–9.
    1. Whistler R. Chapter 11 – Hemicelluloses. In: Industrial Gums. 3rd Edition. London: Academic Press U; 1993.
    1. Semerikov VL, Lascoux M. Genetic relationship among eurasian and american larix species based on allozymes. Heredity (Edinb) 1999;83(Pt 1):62–70. doi: 10.1038/sj.hdy.6885310.
    1. Clarke A, Anderson R, Stone B. Review – Form and function of arabinogalactans and arabinogalactan-proteins. Phys Chem Chem Phys. 1979;8:521–40.
    1. Côté W, Timell T. Studies on Larch arabinogalactan. III. Distribution of arabinogalactan in Tamarack. TAPPI J. 1967;50(6):285–9.
    1. Grieshop CM, Flickinger EA, Fahey GC., Jr Oral administration of arabinogalactan affects immune status and fecal microbial populations in dogs. J Nutr. 2002;132(3):478–82.
    1. Antonova GF, Usov AI. Structure of an arabinogalactan from the wood of the Siberian larch (Larix sibirica Ledeb.) Sov J Bioorganic Chem Dec. 1984;10(12):907–12.
    1. Chandrasekaran R, Janaswamy S. Morphology of Western larch arabinogalactan. Carbohydr Res. 2002;337(21-23):2211-22. .
    1. Odonmazig P, Ebringerova A, Machova E, Alfoldi J. Structural and molecular properties of the arabinogalactan isolated from Mongolian larchwood (Larix dahurica L.). Carbohydr Res. 1994;252:317-24.
    1. Nazareth M, Kennedy C, Bhatia V. Studies on larch arabinogalactan I. J Pharm Sci. 1961;50(7):560–3. doi: 10.1002/jps.2600500705.
    1. Trofimova NN, Medvedeva EN, Ivanova NV, Malkov YA, Babkin VA. Polysaccharides from Larch Biomass. In: Karunaratne DDN, editor. The Complex World of Polysaccharides. InTech; 2012.
    1. Fitzpatrick A, Roberts A, Witherly S. Larch arabinogalactan: a novel and multifunctional natural product. AgroFood Ind Hi-Tech. 2004;15(1):30–2.
    1. Vince AJ, McNeil NI, Wager JD, Wrong OM. The effect of lactulose, pectin, arabinogalactan and cellulose on the production of organic acids and metabolism of ammonia by intestinal bacteria in a faecal incubation system. Br J Nutr. 1990;63(01):17–26. doi: 10.1079/BJN19900088.
    1. Marzorati M, Verhelst A, Luta G, Sinnott R, Verstraete W, Van de Wiele T, et al. In vitro modulation of the human gastrointestinal microbial community by plant-derived polysaccharide-rich dietary supplements. Int J Food Microbiol. 2010;139(3):168–76. doi: 10.1016/j.ijfoodmicro.2010.02.030.
    1. Hughes C, Davoodi-Semiromi Y, Colee JC, Culpepper T, Dahl WJ, Mai V, et al. Galactooligosaccharide supplementation reduces stress-induced gastrointestinal dysfunction and days of cold or flu: a randomized, double-blind, controlled trial in healthy university students. Am J Clin Nutr. 2011;93(6):1305–11. doi: 10.3945/ajcn.111.014126.
    1. Kim LS, Waters RF, Burkholder PM. Immunological activity of larch arabinogalactan and Echinacea: a preliminary, randomized, double-blind, placebo-controlled trial. Altern Med Rev. 2002;7(2):138–49.
    1. Nantz M, Painter A, Parker E, McGill C, Percival S. Evaluation of arabinogalactan’s effect on human immunity. FASEB J. 2001;15(4):633.
    1. Albers R, Bourdet-Sicard R, Braun D, Calder PC, Herz U, Lambert C, et al. Monitoring immune modulation by nutrition in the general population: identifying and substantiating effects on human health. Br J Nutr. 2013;110(Suppl 2):S1–30. doi: 10.1017/S0007114513001505.
    1. Riede L, Grube B, Gruenwald J. Larch arabinogalactan effects on reducing incidence of upper respiratory infections. Curr Med Res Opin. 2013;29(3):251–8. doi: 10.1185/03007995.2013.765837.
    1. Udani JK, Singh BB, Barrett ML, Singh VJ. Proprietary arabinogalactan extract increases antibody response to the pneumonia vaccine: a randomized, double-blind, placebo-controlled, pilot study in healthy volunteers. Nutr J. 2010;9:32.
    1. Udani JK. Immunomodulatory effects of ResistAid: a randomized, double-blind, placebo-controlled, multidose study. J Am Coll Nutr. 2013;32(5):331–8. doi: 10.1080/07315724.2013.839907.
    1. Hauer J, Anderer FA. Mechanism of stimulation of human natural killer cytotoxicity by arabinogalactan from Larix occidentalis. Cancer Immunol Immunother. 1993;36(4):237–44. doi: 10.1007/BF01740905.
    1. Choi EM, Kim AJ, Kim YO, Hwang JK. Immunomodulating activity of arabinogalactan and fucoidan in vitro. J Med Food. 2005;8(4):446–53. doi: 10.1089/jmf.2005.8.446.
    1. Schepetkin IA, Quinn MT. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol. 2006;6(3):317–33. doi: 10.1016/j.intimp.2005.10.005.
    1. Currier NL, Lejtenyi D, Miller SC. Effect over time of in-vivo administration of the polysaccharide arabinogalactan on immune and hemopoietic cell lineages in murine spleen and bone marrow. Phytomedicine. 2003;10(2-3):145–53. doi: 10.1078/094471103321659852.
    1. Robinson RR, Feirtag J, Slavin JL. Effects of dietary arabinogalactan on gastrointestinal and blood parameters in healthy human subjects. J Am Coll Nutr. 2001;20(4):279–85. doi: 10.1080/07315724.2001.10719048.
    1. Macfarlane GT, Steed H, Macfarlane S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol. 2008;104(2):305–44.
    1. Terpend K, Possemiers S, Daguet D, Marzorati M. Arabinogalactan and fructo-oligosaccharides have a different fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) Environ Microbiol Rep. 2013;5(4):595–603. doi: 10.1111/1758-2229.12056.
    1. Cummings JH. Dietary fiber. Br Med Bull. 1981;37(1):65–70.
    1. Prynne CJ, Southgate DAT. The effects of a supplement of dietary fiber on faecal excretion by human subjects. Br J Nutr. 1979;41(03):495–503. doi: 10.1079/BJN19790064.
    1. Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62(1):67–72. doi: 10.1079/PNS2002207.
    1. Yamashita A, Ohtsuka H, Maeda H. Intestinal absorption and urinary excretion of antitumor peptidomannan KS-2 after oral administration in rats. Immunopharmacology. 1983;5(3):209–20. doi: 10.1016/0162-3109(83)90028-0.
    1. Kovarik JJ, Tillinger W, Hofer J, Hölzl MA, Heinzl H, Saemann MD, et al. Impaired anti-inflammatory efficacy of n-butyrate in patients with IBD. Eur J Clin Invest. 2011;41(3):291–8. doi: 10.1111/j.1365-2362.2010.02407.x.
    1. Meijer K, de Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care. 2010;13(6):715–21. doi: 10.1097/MCO.0b013e32833eebe5.
    1. Blottiere HM, Buecher B, Galmiche J-P, Cherbut C. Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proc Nutr Soc. 2003;62(01):101–6. doi: 10.1079/PNS2002215.
    1. Marsland BJ. Regulation of inflammatory responses by the commensal microbiota. Thorax. 2011;67(1):93–4. doi: 10.1136/thoraxjnl-2011-200750.
    1. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282–6. doi: 10.1038/nature08530.
    1. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3(10):858–76. doi: 10.3390/nu3100858.
    1. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104(Suppl 2):S1–63. doi: 10.1017/S0007114510003363.
    1. Corr SC, Gahan CC, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol. 2008;52(1):2–12. doi: 10.1111/j.1574-695X.2007.00359.x.
    1. Featherstone C. M cells: portals to the mucosal immune system. Lancet. 1997;350(9086):1230. .
    1. Siegrist CA. Section1: General aspects of vaccination - Chapter 2: Vaccine immunology. In: al Se, editor. Vaccines. 5th ed. Amsterdam: W.B. Saunders Co; 2008. p. 17-36.
    1. Vos AP, Haarman M, Buco A, Govers M, Knol J, Garssen J et al. A specific prebiotic oligosaccharide mixture stimulates delayed-type hypersensitivity in a murine influenza vaccination model. Int Immunopharmacol. 2006;6(8):1277-86. .
    1. Vos AP, Haarman M, VanGinkel J-WH, Knol J, Garssen J, Stahl B, et al. Dietary supplementation of neutral and acidic oligosaccharides enhances Th1-dependent vaccination responses in mice. Pediatr Allergy Immunol. 2007;18(4):304–12. doi: 10.1111/j.1399-3038.2007.00515.x.
    1. Vos AP, Knol J, Stahl B, M'Rabet L, Garssen J. Specific prebiotic oligosaccharides modulate the early phase of a murine vaccination response. Int Immunopharmacol. 2010;10(5):619–25. doi: 10.1016/j.intimp.2010.02.014.
    1. Vos AP, van Esch BC, Stahl B, M'Rabet L, Folkerts G, Nijkamp FP et al. Dietary supplementation with specific oligosaccharide mixtures decreases parameters of allergic asthma in mice. Int Immunopharmacol. 2007;7(12):1582-7. .
    1. Bunout D, Hirsch S, Pia de la Maza M, Munoz C, Haschke F, Steenhout P, et al. Effects of prebiotics on the immune response to vaccination in the elderly. J Parenter Enteral Nutr. 2002;26(6):372–6. doi: 10.1177/0148607102026006372.
    1. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Guidance on the scientific requirements for health claims related to the immune system, the gastrointestinal tract and defence against pathogenic microorganisms. EFSA J. 2016;14(1):4369, 23 pp. doi:10.2903/j.efsa.2016.4369
    1. European Parliament and Council. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. OJ L 404, 30.12.2006, p. 9–25

Source: PubMed

3
Suscribir