Evaluation of sprayed hypochlorous acid solutions for their virucidal activity against avian influenza virus through in vitro experiments

Hakimullah Hakim, Chanathip Thammakarn, Atsushi Suguro, Yuki Ishida, Akinobu Kawamura, Miho Tamura, Keisuke Satoh, Misato Tsujimura, Tomomi Hasegawa, Kazuaki Takehara, Hakimullah Hakim, Chanathip Thammakarn, Atsushi Suguro, Yuki Ishida, Akinobu Kawamura, Miho Tamura, Keisuke Satoh, Misato Tsujimura, Tomomi Hasegawa, Kazuaki Takehara

Abstract

Hypochlorous acid (HOCl) solutions were evaluated for their virucidal ability against a low pathogenic avian influenza virus (AIV), H7N1. HOCl solutions containing 50, 100 and 200 ppm chlorine (pH 6) or their sprayed solutions (harvested in dishes placed at 1 or 30 cm distance between the spray nozzle and dish) were mixed with the virus with or without organic materials (5% fetal bovine serum: FBS). Under plain diluent conditions (without FBS), harvested solutions of HOCl after spraying could decrease the AIV titer by more than 1,000 times, to an undetectable level (< 2.5 log10TCID50/ml) within 5 sec, with the exception of the 50 ppm solution harvested after spraying at the distance of 30 cm. Under the dirty conditions (in the presence of 5% FBS), they lost their virucidal activity. When HOCl solutions were sprayed directly on the virus on rayon sheets for 10 sec, the solutions of 100 and 200 ppm could inactivate AIV immediately after spraying, while 50 ppm solution required at least 3 min of contact time. In the indirect spray form, after 10 sec of spraying, the lids of the dishes were opened to expose the virus on rayon sheets to HOCl. In this form, the 200 ppm solution inactivated AIV within 10 min of contact, while 50 and 100 ppm could not inactivate it. These data suggest that HOCl can be used in spray form to inactivate AIV at the farm level.

Figures

Fig. 1.
Fig. 1.
Spray system. (A) Direct spray: the lid of the dish was away during solution spray. (B) Indirect spray (aerosol): the lid of the dish was closed during solution spray, after stopping spray it was removed and the dish was kept for 10 min inside the box.

References

    1. Achenbach J. E., Bowen R. A.2011. Transmission of avian influenza A viruses among species in an artificial barnyard. PLoS ONE 6: e17643. doi: 10.1371/journal.pone.0017643
    1. Avellaneda G., Mundt E., Lee C. W., Jadhao S., Suarez D. L.2010. Differentiation of infected and vaccinated animals (DIVA) using the NS1 protein of avian influenza virus. Avian Dis. 54Suppl: 278–286. doi: 10.1637/8644-020409-Reg.1
    1. Bean B., Moore B. M., Sterner B., Peterson L. R., Gerding D. N., Balfour H. H., Jr1982. Survival of influenza viruses on environmental surfaces. J. Infect. Dis. 146: 47–51. doi: 10.1093/infdis/146.1.47
    1. Bieker J. M., Souza C. A., Oberst R. D.2005. Inactivation of various influenza starins to model avian influenza (Bird flu) with various disinfectant chemistries. Sandia National Laboratory, Albuquerque.
    1. Dychdala G. R.2001. Chlorine and chlorine compounds. pp.135–157. In: Disinfection, Sterilization, and Preservation (Block, S. S., ed.), Lippincott Williams & Wilkins, Philadelphia.
    1. Gilbert M., Xiao X., Domenech J., Lubroth J., Martin V., Slingenbergh J.2006. Anatidae migration in the western Palearctic and spread of highly pathogenic avian influenza H5NI virus. Emerg. Infect. Dis. 12: 1650–1656. doi: 10.3201/eid1211.060223
    1. Hao X. X., Li B. M., Zhang Q., Lin B. Z., Ge L. P., Wang C. Y., Cao W.2013. Disinfection effectiveness of slightly acidic electrolysed water in swine barns. J. Appl. Microbiol. 115: 703–710. doi: 10.1111/jam.12274
    1. Hao X. X., Li B. M., Wang C. Y., Zhang Q., Cao W.2013. Application of slightly acidic electrolyzed water for inactivating microbes in a layer breeding house. Poult. Sci. 92: 2560–2566. doi: 10.3382/ps.2013-03117
    1. Harper G. J., Hood A. M., Morton J. D.1958. Airborne micro-organisms: a technique for studying their survival. J. Hyg. (Lond.) 56: 364–370. doi: 10.1017/S0022172400037852
    1. Hinds W. C.1999. Aerosol technology. In: Properties, Behavior, and Measurement of Airborne Particles. 2nd ed. John Wiley & Sons, New York.
    1. Huang Y. R., Hung Y. C., Hsu S. Y., Huang Y. W., Hwang D. F.2008. Application of electrolyzed water in the food industry. Food Contr. 19: 329–345. doi: 10.1016/j.foodcont.2007.08.012
    1. Jahangir A., Ruenphet S., Shoham D., Okamura M., Nakamura M., Takehara K.2010. Haemagglutinin and neuraminidase characterization of low pathogenic H5 and H7 avian influenza viruses isolated from Northern pintails (Anas acuta) in Japan, with special reference to genomic and biogeographical aspects. Virus Genes 40: 94–105. doi: 10.1007/s11262-009-0423-5
    1. Brown J. D., Stallknecht D. E., Swayne D. E.2008. Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage. Emerg. Infect. Dis. 14: 136–142. doi: 10.3201/eid1401.070740
    1. Lombardi M. E., Ladman B. S., Alphin R. L., Benson E. R.2008. Inactivation of avian influenza virus using common detergents and chemicals. Avian Dis. 52: 118–123. doi: 10.1637/8055-070907-Reg
    1. Maillard J. Y., Russell A. D.1997. Viricidal activity and mechanisms of action of biocides. Sci. Prog. 80: 287–315.
    1. Matumoto M.1949. A note on some points of calculation method of LD50 by Reed and Muench. Jpn. J. Exp. Med. 20: 175–179.
    1. Quinn P. J., Markey B. K. 1992. Disinfection and disease prevention in veterinary medicine. pp. 1069–1104. In: Disinfection, Sterilization, and Preservation. 5th ed. (Block, S. S. ed.)Lippincott Williams & Wilkins, Philadelphia.
    1. Rice E. W., Adcock N. J., Sivaganesan M., Brown J. D., Stallknecht D. E., Swayne D. E.2007. Chlorine inactivation of highly pathogenic avian influenza virus (H5N1). Emerg. Infect. Dis. 13: 1568–1570. doi: 10.3201/eid1310.070323
    1. Sattar A. S., Springthorpe S. 1999. Factors influencing the efficacy of antimicrobial agents. pp. 109–138. In: Principles and Practice of Disinfection, Preservation, and Sterilization, 3rd ed. (Russell, A. D.,Hugo,W. B. and Ayliffe, G. A. J. eds.), Blackwell Science, Oxford.
    1. Sattar A. S., Springthorpe S. 1999. Activity against human viruses. pp. 168–186. In: Principles and Practice of Disinfection, Preservation, and Sterilization, 3rd ed. (Russell, A. D., Hugo, W. B. and Ayliffe, G. A. J., eds.), Blackwell Science, Oxford.
    1. Shahid M. A., Abubakar M., Hameed S., Hassan S.2009. Avian influenza virus (H5N1); effects of physico-chemical factors on its survival. Virol. J. 6: 38. doi: 10.1186/1743-422X-6-38
    1. Shahzad M. I., Naeem K., Mukhtar M., Khanum A.2008. Passive immunization against highly pathogenic Avian Influenza Virus (AIV) strain H7N3 with antiserum generated from viral polypeptides protect poultry birds from lethal viral infection. Virol. J. 5: 144.doi: 10.1186/1743-422X-5-144
    1. Shoham D., Jahangir A., Ruenphet S., Takehara K.2012. Persistence of avian influenza viruses in various artificially frozen environmental water types. Influenza Res. Treat. 2012. doi: 10.1155/2012/912326 doi: 10.1155/2012/912326
    1. Spickler A. R., Trampel D. W., Roth J. A.2008. The onset of virus shedding and clinical signs in chickens infected with high-pathogenicity and low-pathogenicity avian influenza viruses. Avian Pathol. 37: 555–577. doi: 10.1080/03079450802499118
    1. Stallknecht D. E., Shane S. M.1988. Host range of avian influenza virus in free-living birds. Vet. Res. Commun. 12: 125–141. doi: 10.1007/BF00362792
    1. Suarez D. L.2012. DIVA vaccination strategies for avian influenza virus. Avian Dis. 56Suppl: 836–844. doi: 10.1637/10207-041512-Review.1
    1. Tamaki S., Bui V. N., Ngo L. H., Ogawa H., Imai K.2014. Virucidal effect of acidic electrolyzed water and neutral electrolyzed water on avian influenza viruses. Arch. Virol. 149: 405–412. doi: 10.1007/s00705-013-1840-2
    1. Tiwari A., Patnayak D. P., Chander Y., Parsad M., Goyal S. M.2006. Survival of two avian respiratory viruses on porous and nonporous surfaces. Avian Dis. 50: 284–287. doi: 10.1637/7453-101205R.1
    1. White G. C. 1999. Handbook of chlorination and alternative disinfectants. pp. 153–156. In: White’s Handbook of Chlorination and Alternative Disinfectants. 5th ed. (Dominic. M. D. and Nico, M. M. N. eds.), John Willey & Son’s, Hoboken.
    1. Yao M., Zhang X., Gao J., Chai T., Miao Z., Ma W., Qin M., Li Q., Li X., Liu J., Zhang H.2011. The occurrence and transmission characteristics of airborne H9N2 avian influenza virus. Berl. Munch. Tierarztl. Wochenschr. 124: 136–141.
    1. Yee K. S., Cardona C. J., Carpenter T. E.2009. Transmission of low-pathogenicity avian influenza virus of subtype H6N2 from chickens to Pekin ducks and Japanese quail (Coturnix coturnix japonica). Avian Pathol. 38: 59–64. doi: 10.1080/03079450802632023
    1. Zhao Y., Xin H., Zhao D., Zheng W., Tian W., Ma H., Liu K., Hu H., Wang T., Soupir M.2014. Free chlorine loss during spraying of membraneless acidic electrolyzed water (MLAEW) and its antimicrobial effect on airborne bacteria from poultry house. Ann. Agric. Environ. Med. 21: 249–255. doi: 10.5604/1232-1966.1108585

Source: PubMed

3
Suscribir