Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows' milk

Sun Jianqin, Xu Leiming, Xia Lu, Gregory W Yelland, Jiayi Ni, Andrew J Clarke, Sun Jianqin, Xu Leiming, Xia Lu, Gregory W Yelland, Jiayi Ni, Andrew J Clarke

Abstract

Background: Cows' milk generally contains two types of β-casein, A1 and A2 types. Digestion of A1 type can yield the peptide β-casomorphin-7, which is implicated in adverse gastrointestinal effects of milk consumption, some of which resemble those in lactose intolerance. This study aimed to compare the effects of milk containing A1 β-casein with those of milk containing only A2 β-casein on inflammation, symptoms of post-dairy digestive discomfort (PD3), and cognitive processing in subjects with self-reported lactose intolerance.

Methods: Forty-five Han Chinese subjects participated in this double-blind, randomized, 2 × 2 crossover trial and consumed milk containing both β-casein types or milk containing only A2 β-casein. Each treatment period was 14 days with a 14-day washout period at baseline and between treatment periods. Outcomes included PD3, gastrointestinal function (measured by smart pill), Subtle Cognitive Impairment Test (SCIT), serum/fecal laboratory biomarkers, and adverse events.

Results: Compared with milk containing only A2 β-casein, the consumption of milk containing both β-casein types was associated with significantly greater PD3 symptoms; higher concentrations of inflammation-related biomarkers and β-casomorphin-7; longer gastrointestinal transit times and lower levels of short-chain fatty acids; and increased response time and error rate on the SCIT. Consumption of milk containing both β-casein types was associated with worsening of PD3 symptoms relative to baseline in lactose tolerant and lactose intolerant subjects. Consumption of milk containing only A2 β-casein did not aggravate PD3 symptoms relative to baseline (i.e., after washout of dairy products) in lactose tolerant and intolerant subjects.

Conclusions: Consumption of milk containing A1 β-casein was associated with increased gastrointestinal inflammation, worsening of PD3 symptoms, delayed transit, and decreased cognitive processing speed and accuracy. Because elimination of A1 β-casein attenuated these effects, some symptoms of lactose intolerance may stem from inflammation it triggers, and can be avoided by consuming milk containing only the A2 type of beta casein.

Trial registration: ClinicalTrials.gov/NCT02406469.

Keywords: Cognitive processing; Cows’ milk; Gastrointestinal function; Lactose intolerance; β-casein.

Figures

Fig. 1
Fig. 1
Study design. A1 = milk containing A1 and A2 β-casein; A2 = milk containing only A2 β-casein; hs-CRP, highly sensitive C-reactive protein; Hb, hemoglobin; IL-4, interleukin-4; Ig, immunoglobulin; BCM-7, β-casomorphin-7; GSH, glutathione; PD3, gastrointestinal symptoms of post-dairy digestive discomfort; SCIT, Subtle Cognitive Impairment Test; SCFA, short-chain fatty acids; MPO, myeloperoxidase
Fig. 2
Fig. 2
Regional gastrointestinal transit time measured using the smart pill. Values are means ± standard deviation. A1 = milk containing A1 and A2 β-casein; A2 = milk containing only A2 β-casein; CTT = colon transit time; SBTT = small bowel transit time; WGTT = whole gastrointestinal transit time
Fig. 3
Fig. 3
SCIT response times according to the intervention received in phase 1 (a); phase 2 (b). A1 = milk containing A1 and A2 β-casein; A2 = milk containing only A2 β-casein
Fig. 4
Fig. 4
Weekly total gastrointestinal symptom scores (overall) in subjects with (a) or without (b) lactose intolerance. A1 = milk containing A1 and A2 β-casein; A2 = milk containing only A2 β-casein. **P < 0.01 vs. baseline; **P < 0.001 vs. baseline

References

    1. Andiran F, Dayi S, Mete E. Cows milk consumption in constipation and anal fissure in infants and young children. J Paediatr Child Health. 2003;39:329–31. doi: 10.1046/j.1440-1754.2003.00152.x.
    1. Daher S, Tahan S, Sole D, Naspitz CK, Da Silva Patricio FR, Neto UF, et al. Cow's milk protein intolerance and chronic constipation in children. Pediatr Allergy Immunol. 2001;12:339–42. doi: 10.1034/j.1399-3038.2001.0o057.x.
    1. Defilippi C, Gomez E, Charlin V, Silva C. Inhibition of small intestinal motility by casein: a role of beta casomorphins? Nutrition. 1995;11:751–4.
    1. Barnett MP, McNabb WC, Roy NC, Woodford KB, Clarke AJ. Dietary A1 beta-casein affects gastrointestinal transit time, dipeptidyl peptidase-4 activity, and inflammatory status relative to A2 beta-casein in Wistar rats. Int J Food Sci Nutr. 2014; doi:10.3109/09637486.2014.898260.
    1. Ul Haq MR, Kapila R, Sharma R, Saliganti V, Kapila S. Comparative evaluation of cow beta-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut. Eur J Nutr. 2014;53:1039–49. doi: 10.1007/s00394-013-0606-7.
    1. Haq MR, Kapila R, Sharma R, Saliganti V, Kapila S. Comparative evaluation of cow beta-casein variants (A1/A2) consumption on Th-mediated inflammatory response in mouse gut. Eur J Nutr. 2013; doi:10.1007/s00394-013-0606-7.
    1. Holmer-Jensen J, Karhu T, Mortensen LS, Pedersen SB, Herzig KH, Hermansen K. Differential effects of dietary protein sources on postprandial low-grade inflammation after a single high fat meal in obese non-diabetic subjects. Nutr J. 2011;10:115. doi: 10.1186/1475-2891-10-115.
    1. Jinsmaa Y, Yoshikawa M. Enzymatic release of neocasomorphin and beta-casomorphin from bovine beta-casein. Peptides. 1999;20:957–62. doi: 10.1016/S0196-9781(99)00088-1.
    1. Becker A, Hempel G, Grecksch G, Matthies H. Effects of beta-casomorphin derivatives on gastrointestinal transit in mice. Biomed Biochim Acta. 1990;49:1203–7.
    1. Mihatsch WA, Franz AR, Kuhnt B, Hogel J, Pohlandt F. Hydrolysis of casein accelerates gastrointestinal transit via reduction of opioid receptor agonists released from casein in rats. Biol Neonate. 2005;87:160–3. doi: 10.1159/000082367.
    1. Schulte-Frohlinde E, Schmid R, Brantl V, Schusdziarra V. Effect of bovine β-casomorphin-4-amide on gastrointestinal transit and pancreatic endocrine function in man. In: Brantl V, Teschemacher H, editors. b-casomorphins and related peptides: recent developments. New York: VCH Weinheim; 1994. pp. 155–60.
    1. Daniel H, Vohwinkel M, Rehner G. Effect of casein and beta-casomorphins on gastrointestinal motility in rats. J Nutr. 1990;120:252–7.
    1. Claustre J, Toumi F, Trompette A, Jourdan G, Guignard H, Chayvialle JA, et al. Effects of peptides derived from dietary proteins on mucus secretion in rat jejunum. Am J Physiol Gastrointest Liver Physiol. 2002;283:G521–8. doi: 10.1152/ajpgi.00535.2001.
    1. Trompette A, Claustre J, Caillon F, Jourdan G, Chayvialle JA, Plaisancie P. Milk bioactive peptides and beta-casomorphins induce mucus release in rat jejunum. J Nutr. 2003;133:3499–503.
    1. Zoghbi S, Trompette A, Claustre J, El Homsi M, Garzon J, Jourdan G, et al. beta-Casomorphin-7 regulates the secretion and expression of gastrointestinal mucins through a mu-opioid pathway. Am J Physiol Gastrointest Liver Physiol. 2006;290:G1105–13. doi: 10.1152/ajpgi.00455.2005.
    1. Elitsur Y, Luk GD. Beta-casomorphin (BCM) and human colonic lamina propria lymphocyte proliferation. Clin Exp Immunol. 1991;85:493–7. doi: 10.1111/j.1365-2249.1991.tb05755.x.
    1. Kayser H, Meisel H. Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins. FEBS Lett. 1996;383:18–20. doi: 10.1016/0014-5793(96)00207-4.
    1. Brussow H. Nutrition, population growth and disease: a short history of lactose. Environ Microbiol. 2013;15:2154–61. doi: 10.1111/1462-2920.12117.
    1. Trivedi MS, Shah JS, Al-Mughairy S, Hodgson NW, Simms B, Trooskens GA, et al. Food-derived opioid peptides inhibit cysteine uptake with redox and epigenetic consequences. J Nutr Biochem. 2014;25:1011–8. doi: 10.1016/j.jnutbio.2014.05.004.
    1. Ho S, Woodford K, Kukuljan S, Pal S. Comparative effects of A1 versus A2 beta-casein on gastrointestinal measures: a blinded randomised cross-over pilot study. Eur J Clin Nutr. 2014; doi: 10.1038/ejcn.2014.127.
    1. Wang YG, Yan YS, Xu JJ, Du RF, Flatz SD, Kuhnau W, et al. Prevalence of primary adult lactose malabsorption in three populations of northern China. Human Genetics. 1984;67:103–6. doi: 10.1007/BF00270566.
    1. Yang J, Deng Y, Chu H, Cong Y, Zhao J, Pohl D, et al. Prevalence and presentation of lactose intolerance and effects on dairy product intake in healthy subjects and patients with irritable bowel syndrome. Clin Gastroenterol Hepatol. 2013;11:262–8.e1. doi: 10.1016/j.cgh.2012.11.034.
    1. Zheng X, Chu H, Cong Y, Deng Y, Long Y, Zhu Y, et al. Self-reported lactose intolerance in clinic patients with functional gastrointestinal symptoms: prevalence, risk factors, and impact on food choices. Neurogastroenterol Motil. 2015;27:1138–46. doi: 10.1111/nmo.12602.
    1. Hu D. China: dairy product quality as the new industry driver. Animal Production and Health Commission for Asia and The Pacific. 2009. pp. 22–43.
    1. Bruce KM, Robinson SR, Smith JA, Yelland GW. Validity of a screening tool for detecting subtle cognitive impairment in the middle-aged and elderly. Clin Interv Aging. 2014;9:2165–76.
    1. Ul Haq MR, Kapila R, Saliganti V. Consumption of β-casomorphins-7/5 induce inflammatory immune response in mice gut through Th2 pathway. J Funct Food. 2014;8:150–60. doi: 10.1016/j.jff.2014.03.018.
    1. Pavord ID. Asthma phenotypes. Semin Respir Crit Care Med. 2012;33:645–52. doi: 10.1055/s-0032-1326962.
    1. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40:235–43. doi: 10.1097/00004836-200603000-00015.
    1. Greer JB, O'Keefe SJ. Microbial induction of immunity, inflammation, and cancer. Front Physiol. 2011;1:168. doi: 10.3389/fphys.2010.00168.
    1. Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut. 1994;35:S35–8. doi: 10.1136/gut.35.1_Suppl.S35.
    1. Andoh A, Tsujikawa T, Fujiyama Y. Role of dietary fiber and short-chain fatty acids in the colon. Curr Pharm Des. 2003;9:347–58. doi: 10.2174/1381612033391973.
    1. Timm D, Willis H, Thomas W, Sanders L, Boileau T, Slavin J. The use of a wireless motility device (SmartPill(R)) for the measurement of gastrointestinal transit time after a dietary fibre intervention. Br J Nutr. 2011;105:1337–42. doi: 10.1017/S0007114510004988.
    1. Lichtwark IT, Newnham ED, Robinson SR, Shepherd SJ, Hosking P, Gibson PR, et al. Cognitive impairment in coeliac disease improves on a gluten-free diet and correlates with histological and serological indices of disease severity. Aliment Pharmacol Ther. 2014;40:160–70. doi: 10.1111/apt.12809.
    1. Heringa SM, van den Berg E, Reijmer YD, Nijpels G, Stehouwer CD, Schalkwijk CG, et al. Markers of low-grade inflammation and endothelial dysfunction are related to reduced information processing speed and executive functioning in an older population - the Hoorn Study. Psychoneuroendocrinology. 2014;40:108–18. doi: 10.1016/j.psyneuen.2013.11.011.
    1. Monson NL, Ireland SJ, Ligocki AJ, Chen D, Rounds WH, Li M, et al. Elevated CNS inflammation in patients with preclinical Alzheimer's disease. J Cereb Blood Flow Metab. 2014;34:30–3. doi: 10.1038/jcbfm.2013.183.
    1. Myers JS, Pierce J, Pazdernik T. Neurotoxicology of chemotherapy in relation to cytokine release, the blood–brain barrier, and cognitive impairment. Oncol Nurs Forum. 2008;35:916–20. doi: 10.1188/08.ONF.916-920.
    1. Trollor JN, Smith E, Agars E, Kuan SA, Baune BT, Campbell L, et al. The association between systemic inflammation and cognitive performance in the elderly: the Sydney Memory and Ageing Study. Age (Dordr) 2012;34:1295–308. doi: 10.1007/s11357-011-9301-x.
    1. Lomer MC. Review article: the aetiology, diagnosis, mechanisms and clinical evidence for food intolerance. Aliment Pharmacol Ther. 2015;41:262–75. doi: 10.1111/apt.13041.
    1. Simsek I. Irritable bowel syndrome and other functional gastrointestinal disorders. J Clin Gastroenterol. 2011;45 Suppl:86–8. doi: 10.1097/MCG.0b013e31821fbd6f.
    1. Vernia P, Di Camillo M, Marinaro V. Lactose malabsorption, irritable bowel syndrome and self-reported milk intolerance. Dig Liver Dis. 2001;33:234–9. doi: 10.1016/S1590-8658(01)80713-1.
    1. Cade R, Privette M, Fregly M, Rowland N, Sun Z, Zele V, et al. Autism and schizophrenia: intestinal disorders. Nutr Neurosci. 2000;3:57–72.
    1. Reichelt KL, Ekrem J, Scott H. Gluten, milk proteins and autism: dietary intervention effects on behavior and peptide secretion. J Appl Nutr. 1990;42:1–11.
    1. Reichelt KL, Knivsberg AM. Can the pathophysiology of autism be explained by the nature of the discovered urine peptides? Nutr Neurosci. 2003;6:19–28. doi: 10.1080/1028415021000042839.
    1. Kawashti MI, Amin OR, Rowehy NG. Possible immunological disorders in autism: concomitant autoimmunity and immune tolerance. Egypt J Immunol. 2006;13:99–104.
    1. Dohan FC. Genetic hypothesis of idiopathic schizophrenia: its exorphin connection. Schizophr Bull. 1988;14:489–94. doi: 10.1093/schbul/14.4.489.
    1. Niebuhr DW, Li Y, Cowan DN, Weber NS, Fisher JA, Ford GM, et al. Association between bovine casein antibody and new onset schizophrenia among US military personnel. Schizophr Res. 2011;128:51–5. doi: 10.1016/j.schres.2011.02.005.
    1. Reichelt KL, Landmark J. Specific IgA antibody increases in schizophrenia. Biol Psychiatry. 1995;37:410–3. doi: 10.1016/0006-3223(94)00176-4.
    1. Severance EG, Dickerson FB, Halling M, Krivogorsky B, Haile L, Yang S, et al. Subunit and whole molecule specificity of the anti-bovine casein immune response in recent onset psychosis and schizophrenia. Schizophr Res. 2010;118:240–7. doi: 10.1016/j.schres.2009.12.030.
    1. Severance EG, Lin J, Sampson HA, Gimenez G, Dickerson FB, Halling M, et al. Dietary antigens, epitope recognition, and immune complex formation in recent onset psychosis and long-term schizophrenia. Schizophr Res. 2011;126:43–50. doi: 10.1016/j.schres.2010.12.001.
    1. Kost NV, Sokolov OY, Kurasova OB, Dmitriev AD, Tarakanova JN, Gabaeva MV, et al. Beta-casomorphins-7 in infants on different type of feeding and different levels of psychomotor development. Peptides. 2009;30:1854–60. doi: 10.1016/j.peptides.2009.06.025.

Source: PubMed

3
Suscribir