Wolfram Syndrome: Diagnosis, Management, and Treatment

Fumihiko Urano, Fumihiko Urano

Abstract

Wolfram syndrome is a rare genetic disorder characterized by juvenile-onset diabetes mellitus, diabetes insipidus, optic nerve atrophy, hearing loss, and neurodegeneration. Although there are currently no effective treatments that can delay or reverse the progression of Wolfram syndrome, the use of careful clinical monitoring and supportive care can help relieve the suffering of patients and improve their quality of life. The prognosis of this syndrome is currently poor, and many patients die prematurely with severe neurological disabilities, raising the urgency for developing novel treatments for Wolfram syndrome. In this article, we describe natural history and etiology, provide recommendations for diagnosis and clinical management, and introduce new treatments for Wolfram syndrome.

Keywords: Blindness; Deafness; Endoplasmic reticulum stress; Genetic disorder; Neurodegeneration; Type 1 diabetes; Type 2 diabetes; Wolfram syndrome; β cells.

Figures

Fig. 1
Fig. 1
Common clinical manifestations in Wolfram syndrome
Fig. 2
Fig. 2
Development of diagnostics and therapeutics for Wolfram syndrome
Fig. 3
Fig. 3
Power of Wolfram syndrome. It has been established that endoplasmic reticulum (ER) dysfunction and ER stress are critical pathogenic components of Wolfram syndrome. It would be possible to identify biomarkers and treatments targeting ER in mechanistically homogenous Wolfram syndrome patients, which may lead to a breakthrough for treatments of common diseases, such as type 1 diabetes, type 2 diabetes, and neurodegeneration, in which ER dysfunction is involved

References

    1. Wolfram DJ, Wagener HP. Diabetes mellitus and simple optic atrophy among siblings: report of four cases. Mayo Clin Proc. 1938;1:715–8.
    1. Kinsley BT, Swift M, Dumont RH, et al. Morbidity and mortality in the Wolfram syndrome. Diabetes Care. 1995;18(12):1566–70. doi: 10.2337/diacare.18.12.1566.
    1. Barrett TG, Bundey SE, Macleod AF. Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet. 1995;346(8988):1458–63. doi: 10.1016/S0140-6736(95)92473-6.
    1. Barrett TG, Bundey SE. Wolfram (DIDMOAD) syndrome. J Med Genet. 1997;34(10):838–41. doi: 10.1136/jmg.34.10.838.
    1. Hershey T, Lugar HM, Shimony JS, et al. Early brain vulnerability in wolfram syndrome. PLoS One. 2012;7(7):e40604. doi: 10.1371/journal.pone.0040604.
    1. Zmyslowska A, Malkowski B, Fendler W, et al. Central nervous system PET-CT imaging reveals regional impairments in pediatric patients with Wolfram syndrome. PLoS One. 2014;9(12):e115605. doi: 10.1371/journal.pone.0115605.
    1. Swift RG, Sadler DB, Swift M. Psychiatric findings in Wolfram syndrome homozygotes. Lancet. 1990;336(8716):667–9. doi: 10.1016/0140-6736(90)92157-D.
    1. Swift RG, Perkins DO, Chase CL, et al. Psychiatric disorders in 36 families with Wolfram syndrome. Am J Psychiatry. 1991;148(6):775–9. doi: 10.1176/ajp.148.6.775.
    1. Inoue H, Tanizawa Y, Wasson J, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome) Nat Genet. 1998;20(2):143–8. doi: 10.1038/2441.
    1. Hansen L, Eiberg H, Barrett T, et al. Mutation analysis of the WFS1 gene in seven Danish Wolfram syndrome families; four new mutations identified. Eur J Hum Genet. 2005;13(12):1275–84. doi: 10.1038/sj.ejhg.5201491.
    1. Bespalova IN, Van Camp G, Bom SJ, et al. Mutations in the Wolfram syndrome 1 gene (WFS1) are a common cause of low frequency sensorineural hearing loss. Hum Mol Genet. 2001;10(22):2501–8. doi: 10.1093/hmg/10.22.2501.
    1. Lesperance MM, Hall JW, 3rd, San Agustin TB, et al. Mutations in the Wolfram syndrome type 1 gene (WFS1) define a clinical entity of dominant low-frequency sensorineural hearing loss. Arch Otolaryngol Head Neck Surg. 2003;129(4):411–20. doi: 10.1001/archotol.129.4.411.
    1. Bonnycastle LL, Chines PS, Hara T, et al. Autosomal dominant diabetes arising from a wolfram syndrome 1 mutation. Diabetes. 2013;62(11):3943–50. doi: 10.2337/db13-0571.
    1. Amr S, Heisey C, Zhang M, et al. A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2. Am J Hum Genet. 2007;81(4):673–83. doi: 10.1086/520961.
    1. Tekgul S, Oge O, Simsek E, et al. Urological manifestations of the Wolfram syndrome: observations in 14 patients. J Urol. 1999;161(2):616–7. doi: 10.1016/S0022-5347(01)61982-7.
    1. Hoekel J, Chisholm SA, Al-Lozi A, et al. Ophthalmologic correlates of disease severity in children and adolescents with Wolfram syndrome. J AAPOS. 2014;18(5):461–5. doi: 10.1016/j.jaapos.2014.07.162.
    1. Zmyslowska A, Fendler W, Niwald A, et al. Retinal thinning as a marker of disease progression in patients with Wolfram syndrome. Diabetes Care. 2015;38(3):e36–7. doi: 10.2337/dc14-1898.
    1. Bababeygy SR, Wang MY, Khaderi KR, et al. Visual improvement with the use of idebenone in the treatment of Wolfram syndrome. J Neuroophthalmol. 2012;32(4):386–9. doi: 10.1097/WNO.0b013e318273c102.
    1. Lu S, Kanekura K, Hara T, et al. A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome. Proc Natl Acad Sci U S A. 2014;111(49):E5292–301. doi: 10.1073/pnas.1421055111.
    1. Higashi K. Otologic findings of DIDMOAD syndrome. Am J Otol. 1991;12(1):57–60.
    1. Kumar S. Wolfram syndrome: important implications for pediatricians and pediatric endocrinologists. Pediatr Diabetes. 2010;11(1):28–37. doi: 10.1111/j.1399-5448.2009.00518.x.
    1. Karzon RK, Hullar TE. Audiologic and vestibular findings in Wolfram syndrome. Ear Hear. 2013;34(6):809–12. doi: 10.1097/AUD.0b013e3182944db7.
    1. Cryns K, Sivakumaran TA, Van den Ouweland JM, et al. Mutational spectrum of the WFS1 gene in Wolfram syndrome, nonsyndromic hearing impairment, diabetes mellitus, and psychiatric disease. Hum Mutat. 2003;22(4):275–87. doi: 10.1002/humu.10258.
    1. Swift M, Swift RG. Wolframin mutations and hospitalization for psychiatric illness. Mol Psychiatry. 2005;10(8):799–803. doi: 10.1038/sj.mp.4001681.
    1. Bischoff AN, Reiersen AM, Buttlaire A, et al. Selective cognitive and psychiatric manifestations in Wolfram Syndrome. Orphanet J Rare Dis. 2015;10:66. doi: 10.1186/s13023-015-0282-1.
    1. Ishihara H, Takeda S, Tamura A, et al. Disruption of the WFS1 gene in mice causes progressive beta-cell loss and impaired stimulus-secretion coupling in insulin secretion. Hum Mol Genet. 2004;13(11):1159–70. doi: 10.1093/hmg/ddh125.
    1. Riggs AC, Bernal-Mizrachi E, Ohsugi M, et al. Mice conditionally lacking the Wolfram gene in pancreatic islet beta cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia. 2005;48(11):2313–21. doi: 10.1007/s00125-005-1947-4.
    1. Fonseca SG, Fukuma M, Lipson KL, et al. WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic {beta}-cells. J Biol Chem. 2005;280(47):39609–15. doi: 10.1074/jbc.M507426200.
    1. Fonseca SG, Gromada J, Urano F. Endoplasmic reticulum stress and pancreatic beta-cell death. Trends Endocrinol Metab. 2011;22(7):266–74.
    1. Fonseca SG, Ishigaki S, Oslowski CM, et al. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J Clin Invest. 2010;120(3):744–55. doi: 10.1172/JCI39678.
    1. Ajlouni K, Jarrah N, El-Khateeb M, et al. Wolfram syndrome: identification of a phenotypic and genotypic variant from Jordan. Am J Med Genet. 2002;115(1):61–5. doi: 10.1002/ajmg.10345.
    1. Mozzillo E, Delvecchio M, Carella M, et al. A novel CISD2 intragenic deletion, optic neuropathy and platelet aggregation defect in Wolfram syndrome type 2. BMC Med Genet. 2014;15:88. doi: 10.1186/1471-2350-15-88.
    1. Urano F. Diabetes: targeting endoplasmic reticulum to combat juvenile diabetes. Nat Rev Endocrinol. 2014;10(3):129–30. doi: 10.1038/nrendo.2013.261.
    1. Ramadan JW, Steiner SR, O'Neill CM, et al. The central role of calcium in the effects of cytokines on beta-cell function: implications for type 1 and type 2 diabetes. Cell Calcium. 2011;50(6):481–90. doi: 10.1016/j.ceca.2011.08.005.
    1. Calamini B, Morimoto RI. Protein homeostasis as a therapeutic target for diseases of protein conformation. Curr Top Med Chem. 2012;12(22):2623–40. doi: 10.2174/1568026611212220014.
    1. Engin F, Yermalovich A, Nguyen T, et al. Restoration of the unfolded protein response in pancreatic beta cells protects mice against type 1 diabetes. Sci Transl Med. 2013;5(211):211ra156. doi: 10.1126/scitranslmed.3006534.
    1. Welch WJ, Brown CR. Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones. 1996;1(2):109–15. doi: 10.1379/1466-1268(1996)001<0109:IOMACC>;2.
    1. Shang L, Hua H, Foo K, et al. β-cell dysfunction due to increased ER stress in a stem cell model of wolfram syndrome. Diabetes. 2014;63(3):923–33. doi: 10.2337/db13-0717.
    1. Hara T, Mahadevan J, Kanekura K, et al. Calcium efflux from the endoplasmic reticulum leads to beta-cell death. Endocrinology. 2014;155(3):758–68. doi: 10.1210/en.2013-1519.
    1. Cardozo AK, Ortis F, Storling J, et al. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes. 2005;54(2):452–61. doi: 10.2337/diabetes.54.2.452.
    1. Zatyka M, Da Silva Xavier G, Bellomo EA, et al. Sarco(endo)plasmic reticulum ATPase is a molecular partner of Wolfram syndrome 1 protein, which negatively regulates its expression. Hum Mol Genet. 2014
    1. Tabar V, Studer L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet. 2014;15(2):82–92. doi: 10.1038/nrg3563.
    1. Urano F. Wolfram syndrome iPS cells: the first human cell model of endoplasmic reticulum disease. Diabetes. 2014;63(3):844–6. doi: 10.2337/db13-1809.
    1. Petrova P, Raibekas A, Pevsner J, et al. MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci. 2003;20(2):173–88. doi: 10.1385/JMN:20:2:173.
    1. Lindahl M, Danilova T, Palm E, et al. MANF is indispensable for the proliferation and survival of pancreatic beta cells. Cell Rep. 2014;7(2):366–75. doi: 10.1016/j.celrep.2014.03.023.
    1. Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol. 2012;197(7):857–67. doi: 10.1083/jcb.201110131.

Source: PubMed

3
Suscribir