Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition

Shanjie Wang, Zhijing Zhao, Xinyu Feng, Zheng Cheng, Zhenyu Xiong, Tingting Wang, Jie Lin, Mingming Zhang, Jianqiang Hu, Yanhong Fan, Russel J Reiter, Haichang Wang, Dongdong Sun, Shanjie Wang, Zhijing Zhao, Xinyu Feng, Zheng Cheng, Zhenyu Xiong, Tingting Wang, Jie Lin, Mingming Zhang, Jianqiang Hu, Yanhong Fan, Russel J Reiter, Haichang Wang, Dongdong Sun

Abstract

Mitophagy eliminates dysfunctional mitochondria and thus plays a cardinal role in diabetic cardiomyopathy (DCM). We observed the favourable effects of melatonin on cardiomyocyte mitophagy in mice with DCM and elucidated their underlying mechanisms. Electron microscopy and flow cytometric analysis revealed that melatonin reduced the number of impaired mitochondria in the diabetic heart. Other than decreasing mitochondrial biogenesis, melatonin increased the clearance of dysfunctional mitochondria in mice with DCM. Melatonin increased LC3 II expression as well as the colocalization of mitochondria and lysosomes in HG-treated cardiomyocytes and the number of typical autophagosomes engulfing mitochondria in the DCM heart. These results indicated that melatonin promoted mitophagy. When probing the mechanism, increased Parkin translocation to the mitochondria may be responsible for the up-regulated mitophagy exerted by melatonin. Parkin knockout counteracted the beneficial effects of melatonin on the cardiac mitochondrial morphology and bioenergetic disorders, thus abolishing the substantial effects of melatonin on cardiac remodelling with DCM. Furthermore, melatonin inhibited Mammalian sterile 20-like kinase 1 (Mst1) phosphorylation, thus enhancing Parkin-mediated mitophagy, which contributed to mitochondrial quality control. In summary, this study confirms that melatonin rescues the impaired mitophagy activity of DCM. The underlying mechanism may be attributed to activation of Parkin translocation via inhibition of Mst1.

Keywords: diabetic cardiomyopathy; mammalian Ste20-like kinase 1, Mst1; melatonin; mitochondrion; mitophagy; parkin.

© 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

Figures

Figure 1
Figure 1
Melatonin enhances impaired mitochondria elimination in diabetic cardiomyopathy mice A, Representative TEM images of the longitudinal left ventricular wall. B, Mitochondrial number obtained by manual counting per photograph (Magnification, ×9900) per group. C, The percentage of mitochondrial areas per image (Magnification, ×9900). The columns and error bars represent the means and standard deviations (SD) (n = 12) *P < 0.05 vs WT and †P < 0.05 vs DM. D, Representative flow cytometric curves of the fluorescence intensity (MitoTracker Green) in adult cardiomyocytes. E, Mean fluorescence intensity (MitoTracker Green) of flow cytometric analysis. F, Protein expression with representative gel blots of PGC‐1α, NRF‐1, TFAM, and GAPDH (loading control). G, Relative levels of PGC‐1α. H, Relative levels of NRF‐1. I, Relative levels of TFAM. The columns and error bars represent the means and standard deviation (SD) (n = 4) *P < 0.05 vs WT and †P < 0.05 vs DM
Figure 2
Figure 2
Melatonin regulation of mitophagy activity in the diabetic myocardium A, Protein expression with representative gel blots of LC3 I/II, GAPDH (loading control). B, Relative level of LC3 II. The columns and error bars represent the means and standard deviations (SD) (n = 4) *P < 0.05 vs Con; †P < 0.05 vs Mel; ‡P < 0.05 vs HG; §P < 0.05 vs HG + Mel; ||P < 0.05 vs HG + Mel + 3‐MA. C, Representative colocalization images of lysosomes (LysoTracker Green) and mitochondria (MitoTracker Red) (Scale bar: 20 μm). D, Quantitative analysis of LysoTracker/MitoTracker colocalization (percentage of whole cell). The columns and error bars represent the means and standard deviation (SD) (n = 30 cells) *P < 0.05 vs Con; †P < 0.05 vs HG; ‡P < 0.05 vs HG + Mel. E, Representative typical autophagosome engulfing an impaired mitochondrion (Scale bars: 400 nm) in cardiac tissue
Figure 3
Figure 3
Melatonin promotes Parkin‐mediated mitophagy in diabetic cardiomyopathy A, Protein expression with representative gel blots of PINK1, Parkin, GAPDH (loading control). B, Relative levels of PINK1. C, Relative levels of Parkin. D, Protein expression with representative gel blots of Cyto‐Parkin, Mito‐Parkin, Mito‐p62, GAPDH (loading control for Cyto‐Parkin), COX4 (loading control for Mito‐Parkin, Mito‐p62). E, Relative levels of Cyto‐Parkin. F, Relative levels of Mito‐Parkin. G, Relative level of Mito‐p62. The columns and error bars represent the means and standard deviations (SD) (n = 3) *P < 0.05 vs Con; †P < 0.05 vs Mel; ‡P < 0.05 vs DM. H, Representative colocalization images of Parkin (Green) and mitochondria (MitoTracker Red) (Scale bars: 20 μm). I, Relative level of Parkin in confocal images. J, Quantitative analysis of Parkin/MitoTracker Red colocalization (percentage of whole cells). The columns and error bars represent the means and standard deviation (SD) (n = 30 cells). *P < 0.05 vs Con; †P < 0.05 vs Mel; ‡P < 0.05 vs HG
Figure 4
Figure 4
Parkin inhibition counteracts the effects of melatonin on mitophagy. A, Protein expression with representative gel blots of Parkin, Mito‐p62, COX4, p62, LC3, GAPDH (loading control for Parkin, p62, LC3). B, Relative level of Parkin. C, Relative level of p62. D, Relative level of Mito‐p62. E, Relative level of LC3 II. (n = 4). *P < 0.05 vs Con; †P < 0.05 vs HG; ‡P < 0.05 vs HG + Ad‐LacZ; §P < 0.05 vs HG + Ad‐sh‐Parkin; and ||P < 0.05 vs HG + Mel. F, Representative cardiomyocyte images of transmission electron microscopy (TEM) (Scale bars: upper panel 1 μm, and lower panel 400 nm). G, Representative colocalization images of GFP‐LC3 (Green) and mitochondria (MitoTracker Red) (Scale bars: 20 μm). H, Quantitative analysis of GFP‐LC3 punctae per cell. I, Percentage of cells with LC3 and mitochondria (MitoTracker Red, MTR) colocalization. The columns and error bars represent the means and standard deviations (SD) (n = 30 cells). *P < 0.05 vs Con; †P < 0.05 vs HG; ‡P < 0.05 vs HG + Ad‐LacZ; §P < 0.05 vs HG + Ad‐sh‐Parkin; and ||P < 0.05 vs HG + Mel
Figure 5
Figure 5
Melatonin ameliorates DCM phenotypes via Parkin. A, Representative images of echocardiography. B, Measurements of LVEF (%). C, Measurements of LVFS (%). D, Measurements of LVESD (mm). E, Measurements of LVEDD (mm). The columns and error bars represent the means and standard deviations (SD) (n = 12). *P < 0.05 vs WT; †P < 0.05 vs DM; and ‡P < 0.05 vs DM + Mel. F, Representative images of TUNEL staining (Scale bar: 40 μm). G, Quantitative analysis of the apoptotic index (percentage of TUNEL‐positive nuclei, %). The columns and error bars represent the means and standard deviations (SD) (n = 20) *P < 0.05 vs Con; †P < 0.05 vs HG; ‡P < 0.05 vs HG + Ad‐LacZ; §P < 0.05 vs HG + Ad‐sh‐Parkin; and ||P < 0.05 vs HG + Mel. H, Relative ROS level. I, Representative images of mitochondrial morphology (Scale bars: 1 μm). J, Myocardial ATP content. K, Citrate synthase (CS) activity in cardiac tissues. The columns and error bars represent the means and standard deviation (SD). *P < 0.05 vs WT; †P < 0.05 vs DM; and ‡P < 0.05 vs DM + Mel
Figure 6
Figure 6
Mst1 as a negative regulator amongst melatonin‐regulated Parkin signaling. A, Representative colocalization images of GFP‐LC3 and mitochondria (MitoTracker Red) (Scale bars: 20 μm). B, Quantitative analysis of GFP‐LC3 punctae per cell. C, Percentage of cells with LC3 and mitochondria (MitoTracker Red, MTR) colocalization. D, Quantitative analysis of GFP‐LC3 puncta colocalization with mitochondria (MitoTracker Red) per cell. The columns and error bars represent the means and standard deviations (SD) (n = 30 cells). *P < 0.05 vs HG; †P < 0.05 vs HG + Mel; ‡P < 0.05 vs HG + Ad‐sh‐Mst1; §P < 0.05 vs HG + Ad‐Mst1; and ||P < 0.05 vs HG + Ad‐sh‐Mst1 + Mel. E, Representative gel blots of Mst1, Parkin, p‐Parkin (Ser65), Mito‐Parkin, COX4 (loading control for mitochondrial protein) and GAPDH (loading control for whole protein). F, Relative levels of Mst1. G, Relative levels of Parkin. H, Relative levels of p‐Parkin. I, Relative levels of Mito‐Parkin. The columns and error bars represent the means and standard deviations (SD) (n = 4). *P < 0.05 vs DM; †P < .05 vs DM + Mel; ‡P < 0.05 vs DM + Mst1−/−; §P < 0.05 vs DM + Mst1 Tg; and ||P < 0.05 vs DM + Mst1−/− + Mel

References

    1. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:4‐14.
    1. Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 2016;12:144‐153.
    1. Seferovic PM, Paulus WJ. Clinical diabetic cardiomyopathy: a two‐faced disease with restrictive and dilated phenotypes. Eur Heart J. 2015;36:1718‐1727, 1727a.
    1. Huynh K, Bernardo BC, McMullen JR, et al. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 2014;142:375‐415.
    1. Nisoli E, Clementi E, Moncada S, et al. Mitochondrial biogenesis as a cellular signaling framework. Biochem Pharmacol. 2004;67:1‐15.
    1. Vega RB, Horton JL, Kelly DP. Maintaining ancient organelles: mitochondrial biogenesis and maturation. Circ Res. 2015;116:1820‐1834.
    1. Dorn GN, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev. 2015;29:1981‐1991.
    1. Reiter RJ, Mayo JC, Tan DX, et al. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016;61:253‐278.
    1. Govender J, Loos B, Marais E, et al. Mitochondrial catastrophe during doxorubicin‐induced cardiotoxicity: a review of the protective role of melatonin. J Pineal Res. 2014;57:367‐380.
    1. Ortiz F, Garcia JA, Acuna‐Castroviejo D, et al. The beneficial effects of melatonin against heart mitochondrial impairment during sepsis: inhibition of INOS and preservation of NNOS. J Pineal Res. 2014;56:71‐81.
    1. Yang Y, Duan W, Jin Z, et al. Jak2/Stat3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J Pineal Res. 2013;55:275‐286.
    1. Sung MM, Hamza SM, Dyck JR. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Signal. 2015;22:1606‐1630.
    1. Kubli DA, Gustafsson AB. Unbreak my heart: targeting mitochondrial autophagy in diabetic cardiomyopathy. Antioxid Redox Signal. 2015;22:1527‐1544.
    1. Afanasiev SA, Egorova MV, Kutsykova TV, et al. Influence of fatty acids on oxygen consumption in isolated cardiomyocytes of rats with ischemic or diabetic heart disease. Vestn Ross Akad Med Nauk. 2016;88:97‐101.
    1. Wilson AJ, Gill EK, Abudalo RA, et al. Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting. Heart. 2018;104:293‐299.
    1. Volpe C, Villar‐Delfino PH, Dos AP, et al. Cellular death, reactive oxygen species (Ros) and diabetic complications. Cell Death Dis. 2018;9:119.
    1. Liang Q, Kobayashi S. Mitochondrial quality control in the diabetic heart. J Mol Cell Cardiol. 2016;95:57‐69.
    1. Yamano K, Matsuda N, Tanaka K. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep. 2016;17:300‐316.
    1. Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase pink1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524:309‐314.
    1. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12:9‐14.
    1. Zhou H, Li D, Zhu P, et al. Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via ppargamma/fundc1/mitophagy pathways. J Pineal Res. 2017;63 DOI: 10.1111/jpi.12438.
    1. Geisler S, Holmstrom KM, Skujat D, et al. Pink1/parkin‐mediated mitophagy is dependent on Vdac1 and P62/Sqstm1. Nat Cell Biol. 2010;12:119‐131.
    1. Reiter RJ, Rosales‐Corral S, Tan DX, et al. Melatonin as a mitochondria‐targeted antioxidant: one of evolution's best ideas. Cell Mol Life Sci. 2017;74:3863‐3881.
    1. Manchester LC, Coto‐Montes A, Boga JA, et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res. 2015;59:403‐419.
    1. Stehle JH, Saade A, Rawashdeh O, et al. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res. 2011;51:17‐43.
    1. Byeon Y, Lee K, Park YI, et al. Molecular cloning and functional analysis of serotonin N‐acetyltransferase from the Cyanobacterium synechocystis sp. Pcc 6803. J Pineal Res. 2013;55:371‐376.
    1. Tan DX, Manchester LC, Liu X, et al. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. J Pineal Res. 2013;54:127‐138.
    1. Pei HF, Hou JN, Wei FP, et al. Melatonin attenuates postmyocardial infarction injury via increasing Tom70 expression. J Pineal Res. 2017;62 DOI: 10.1111/jpi.12371.
    1. Dominguez‐Rodriguez A, Abreu‐Gonzalez P, de la Torre‐Hernandez JM, et al. Effect of intravenous and intracoronary melatonin as an adjunct to primary percutaneous coronary intervention for acute st‐elevation myocardial infarction: results of the melatonin adjunct in the acute myocardial infarction treated with angioplasty trial. J Pineal Res. 2017;62 DOI: 10.1111/jpi.12374.
    1. Gao L, Zhao YC, Liang Y, et al. The impaired myocardial ischemic tolerance in adult offspring of diabetic pregnancy is restored by maternal melatonin treatment. J Pineal Res. 2016;61:340‐352.
    1. Volt H, Garcia JA, Doerrier C, et al. Same molecule but different expression: aging and sepsis trigger Nlrp3 inflammasome activation, a target of melatonin. J Pineal Res. 2016;60:193‐205.
    1. Mukherjee D, Ghosh AK, Dutta M, et al. Mechanisms of isoproterenol‐induced cardiac mitochondrial damage: protective actions of melatonin. J Pineal Res. 2015;58:275‐290.
    1. Zhang H, Liu D, Wang X, et al. Melatonin improved rat cardiac mitochondria and survival rate in septic heart injury. J Pineal Res. 2013;55:1‐6.
    1. Huo X, Wang C, Yu Z, et al. Human transporters, Pept1/2, facilitate melatonin transportation into mitochondria of cancer cells: an implication of the therapeutic potential. J Pineal Res. 2017;62 DOI: 10.1111/jpi.12390.
    1. Venegas C, Garcia JA, Escames G, et al. Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res. 2012;52:217‐227.
    1. Acuna‐Castroviejo D, Escames G, Venegas C, et al. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci. 2014;71:2997‐3025.
    1. Onphachanh X, Lee HJ, Lim JR, et al. Enhancement of high glucose‐induced Pink1 expression by melatonin stimulates neuronal cell survival: involvement of Mt2/Akt/Nf‐Kappab pathway. J Pineal Res. 2017;63 DOI: 10.1111/jpi.12427.
    1. Zhang M, Lin J, Wang S, et al. Melatonin protects against diabetic cardiomyopathy through Mst1/Sirt3 signaling. J Pineal Res. 2017;63 DOI: 10.1111/jpi.12418.
    1. Zhang M, Zhang L, Hu J, et al. Mst1 coordinately regulates autophagy and apoptosis in diabetic cardiomyopathy in mice. Diabetologia. 2016;59:2435‐2447.
    1. Hu J, Man W, Shen M, et al. Luteolin alleviates post‐infarction cardiac dysfunction by up‐regulating autophagy through Mst1 inhibition. J Cell Mol Med. 2016;20:147‐156.
    1. Hu J, Zhang L, Yang Y, et al. Melatonin alleviates postinfarction cardiac remodeling and dysfunction by inhibiting Mst1. J Pineal Res. 2017;62 DOI: 10.1111/jpi.12368 .
    1. Esteban‐Martinez L, Villarejo‐Zori B, Boya P. Cytofluorometric assessment of mitophagic flux in mammalian cells and tissues. Methods Enzymol. 2017;588:209‐217.
    1. Hsu P, Liu X, Zhang J, et al. Cardiolipin remodeling by Taz/Tafazzin is selectively required for the initiation of mitophagy. Autophagy. 2015;11:643‐652.
    1. Gu X, Xu J, Zhu L, et al. Prostaglandin E2 reduces cardiac contractility via Ep3 receptor. Circ Heart Fail. 2016. DOI: .
    1. Hu J, Zhang L, Zhao Z, et al. Osm mitigates post‐infarction cardiac remodeling and dysfunction by up‐regulating autophagy through mst1 suppression. Biochim Biophys Acta. 2017;1863:1951‐1961.
    1. Kishi‐Itakura C, Buss F. The use of correlative light‐electron microscopy (Clem) to study pink1/parkin‐mediated mitophagy. Methods Mol Biol. 2017. DOI: 10.1007/7651_2017_8.
    1. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047‐1053.
    1. Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 2014;57:660‐671.
    1. Narendra DP, Jin SM, Tanaka A, et al. Pink1 is selectively stabilized on impaired mitochondria to activate parkin. PLoS Biol. 2010;8:e1000298.
    1. Matsuda N, Sato S, Shiba K, et al. Pink1 stabilized by mitochondrial depolarization recruits parkin to damaged mitochondria and activates latent parkin for mitophagy. J Cell Biol. 2010;189:211‐221.
    1. Kane LA, Youle RJ. Pink1 and Parkin flag miro to direct mitochondrial traffic. Cell. 2011;147:721‐723.
    1. Han JY, Kang MJ, Kim KH, et al. Nitric oxide induction of parkin translocation in pten‐induced putative kinase 1 (Pink1) deficiency: functional role of neuronal nitric oxide synthase during mitophagy. J Biol Chem. 2015;290:10325‐10335.
    1. Jin SM, Lazarou M, Wang C, et al. Mitochondrial membrane potential regulates pink1 import and proteolytic destabilization by parl. J Cell Biol. 2010;191:933‐942.
    1. Chen Y, Dorn GN. Pink1‐phosphorylated mitofusin 2 is a parkin receptor for culling damaged mitochondria. Science. 2013;340:471‐475.
    1. Gegg ME, Cooper JM, Chau KY, et al. Mitofusin 1 and Mitofusin 2 are ubiquitinated in a pink1/parkin‐dependent manner upon induction of mitophagy. Hum Mol Genet. 2010;19:4861‐4870.
    1. Chen Z, Liu L, Cheng Q, et al. Mitochondrial E3 ligase March5 regulates fundc1 to fine‐tune hypoxic mitophagy. EMBO Rep. 2017;18:495‐509.
    1. Quinsay MN, Thomas RL, Lee Y, et al. Bnip3‐mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy. 2010;6:855‐862.
    1. Xu X, Kobayashi S, Chen K, et al. Diminished autophagy limits cardiac injury in mouse models of Type 1 diabetes. J Biol Chem. 2013;288:18077‐18092.
    1. Pankiv S, Clausen TH, Lamark T, et al. P62/Sqstm1 binds directly to Atg8/Lc3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282:24131‐24145.

Source: PubMed

3
Suscribir