Expected values for pedometer-determined physical activity in older populations

Catrine Tudor-Locke, Teresa L Hart, Tracy L Washington, Catrine Tudor-Locke, Teresa L Hart, Tracy L Washington

Abstract

The purpose of this review is to update expected values for pedometer-determined physical activity in free-living healthy older populations. A search of the literature published since 2001 began with a keyword (pedometer, "step counter," "step activity monitor" or "accelerometer AND steps/day") search of PubMed, Cumulative Index to Nursing & Allied Health Literature (CINAHL), SportDiscus, and PsychInfo. An iterative process was then undertaken to abstract and verify studies of pedometer-determined physical activity (captured in terms of steps taken; distance only was not accepted) in free-living adult populations described as >/= 50 years of age (studies that included samples which spanned this threshold were not included unless they provided at least some appropriately age-stratified data) and not specifically recruited based on any chronic disease or disability. We identified 28 studies representing at least 1,343 males and 3,098 females ranging in age from 50-94 years. Eighteen (or 64%) of the studies clearly identified using a Yamax pedometer model. Monitoring frames ranged from 3 days to 1 year; the modal length of time was 7 days (17 studies, or 61%). Mean pedometer-determined physical activity ranged from 2,015 steps/day to 8,938 steps/day. In those studies reporting such data, consistent patterns emerged: males generally took more steps/day than similarly aged females, steps/day decreased across study-specific age groupings, and BMI-defined normal weight individuals took more steps/day than overweight/obese older adults. The range of 2,000-9,000 steps/day likely reflects the true variability of physical activity behaviors in older populations. More explicit patterns, for example sex- and age-specific relationships, remain to be informed by future research endeavors.

References

    1. Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Report, 2008. Washington, D.C.: U.S. Department of Health and Human Services; 2008.
    1. Taylor AH, Cable NT, Faulkner G, Hillsdon M, Narici M, Bij AK Van Der. Physical activity and older adults: a review of health benefits and the effectiveness of interventions. J Sports Sci. 2004;22(8):703–725. doi: 10.1080/02640410410001712421.
    1. Tudor-Locke C, Williams JE, Reis JP, Pluto D. Utility of pedometers for assessing physical activity: convergent validity. Sports Med. 2002;32(12):795–808. doi: 10.2165/00007256-200232120-00004.
    1. Tudor-Locke C, Ham SA. Walking behaviors reported in the American Time Use Survey 2003–2005. J Phys Act Health. 2008;5(5):633–647.
    1. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–188.
    1. Tudor-Locke C. Taking steps toward increased physical activity: using pedometers to measure and motivate. Research Digest. 2002;3(17):1–8.
    1. Myers AM. Program Evaluation for Exercise Leaders. Champaign, IL: Human Kinetics; 1999.
    1. Tudor-Locke C, Myers AM. Methodological considerations for researchers and practitioners using pedometers to measure physical (ambulatory) activity. Res Q Exerc Sport. 2001;72(1):1–12.
    1. Bassey EJ, Dallosso HM, Fentem PH, Irving JM, Patrick JM. Validation of a simple mechanical accelerometer (pedometer) for the estimation of walking activity. Eur J Appl Physiol Occup Physiol. 1987;56(3):323–330. doi: 10.1007/BF00690900.
    1. Bassey EJ, Bendall MJ, Pearson M. Muscle strength in the triceps surae and objectively measured customary walking activity in men and women over 65 years of age. Clin Sci. 1988;74(1):85–89.
    1. Voorrips LE, Ravelli AC, Dongelmans PC, Deurenberg P, Van Staveren WA. A physical activity questionnaire for the elderly. Med Sci Sports Exerc. 1991;23(8):974–979.
    1. Visser M, De Groot LC, Deurenberg P, Van Staveren WA. Validation of dietary history method in a group of elderly women using measurements of total energy expenditure. Br J Nutr. 1995;74(6):775–785. doi: 10.1079/BJN19950005.
    1. Kitagawa J, Omasu F, Nakahara Y. Effect of daily walking steps on ultrasound parameters of the calcaneus in elderly Japanese women. Osteoporos Int. 2003;14(3):219–224.
    1. Moreau KL, Degarmo R, Langley J, McMahon C, Howley ET, Bassett DR Jr, Thompson DL. Increasing daily walking lowers blood pressure in postmenopausal women. Med Sci Sports Exerc. 2001;33(11):1825–1831. doi: 10.1097/00005768-200111000-00005.
    1. Yoshiuchi K, Nakahara R, Kumano H, Kuboki T, Togo F, Watanabe E, Yasunaga A, Park H, Shephard RJ, Aoyagi Y. Yearlong physical activity and depressive symptoms in older Japanese adults: cross-sectional data from the Nakanojo study. Am J Geriatr Psychiatry. 2006;14(7):621–624. doi: 10.1097/01.JGP.0000200602.70504.9c.
    1. Swartz AM, Strath SJ, Miller NE, Cashin SE, Cieslik LJ. Glucose control and walking in a multiethnic sample of older adults. Gerontology. 2007;53(6):454–461. doi: 10.1159/000118600.
    1. Swartz AM, Strath SJ, Parker SJ, MIller NE. The impact of body-mass index and steps per day on blood pressure and fasting glucose in older adults. J Aging Phys Act. 2008;16:188–200.
    1. Croteau KA, Richeson NA, Vines SW, Jones DB. Effects of a pedometer-based physical activity program on older adults' motility-related self-efficacy and physical performance. Activ Adapt Aging. 2004;28(2):19–33. doi: 10.1300/J016v28n02_02.
    1. Bergman RJ, Bassett DR Jr, Muthukrishnan S, Klein DA. Validity of 2 devices for measuring steps taken by older adults in assisted-living facilities. J Phys Act Health. 2008;5(Suppl 1):S166–175.
    1. Richeson NE, Vines SW, Jones DB, Croteau KA. Pedometer as a minimal intervention to improve physical performance indicators for an older adult: An interdisciplinary health team approach and case study. Am J Rec Ther. 2003;2(2):21–26.
    1. Giuliani CA, Gruber-Baldini AL, Park NS, Schrodt LA, Rokoske F, Sloane PD, Zimmerman S. Physical performance characteristics of assisted living residents and risk for adverse health outcomes. Gerontologist. 2008;48(2):203–212.
    1. Bassett DR Jr, Ainsworth BE, Leggett SR, Mathien CA, Main JA, Hunter DC, Duncan GE. Accuracy of five electronic pedometers for measuring distance walked. Med Sci Sports Exerc. 1996;28(8):1071–1077.
    1. Cyarto EV, Myers AM, Tudor-Locke C. Pedometer accuracy in nursing home and community-dwelling older adults. Med Sci Sports Exerc. 2004;36(2):205–209. doi: 10.1249/01.MSS.0000113476.62469.98.
    1. Tudor-Locke C, Washington TL, Hart TL. Expected values for steps/day in special populations. Prev Med. 2009;49(1):3–11. doi: 10.1016/j.ypmed.2009.04.012.
    1. Tudor-Locke C, McClain JJ, Hart TL, Sisson SB, Washington TL. Expected values for pedometer-determined physical activity in youth. Res Q Exerc Sport. 2009;80(2):164–174.
    1. Tudor-Locke C, Ham SA, Macera CA, Ainsworth BE, Kirtland KA, Reis JP, Kimsey CD Jr. Descriptive epidemiology of pedometer-determined physical activity. Med Sci Sports Exerc. 2004;36(9):1567–1573. doi: 10.1249/01.MSS.0000139806.53824.2E.
    1. Wyatt HR, Peters JC, Reed GW, Barry M, Hill JO. A Colorado statewide survey of walking and its relation to excessive weight. Med Sci Sports Exerc. 2005;37(5):724–730. doi: 10.1249/01.MSS.0000161750.84096.D4.
    1. Strath S, Swartz A, Parker S, Miller N, Cieslik L. Walking and metabolic syndrome in older adults. J Phys Act Health. 2007;4(4):397–410.
    1. Payn T, Pfeiffer KA, Hutto B, Vena JE, LaMonte MJ, Blair SN, Hooker SP. Daily steps in midlife and older adults: relationship with demographic, self-rated health, and self-reported physical activity. Res Q Exerc Sport. 2008;79(2):128–132.
    1. Croteau KA, Richeson NA. A matter of health: Using pedometers to increase the physical activity of older adults. Activ Adapt Aging. 2005;30(2):37–47. doi: 10.1300/J016v30n02_03.
    1. Tudor-Locke C, Bassett DR Jr, Rutherford WJ, Ainsworth BE, Chan CB, Croteau K, Giles-Corti B, Le Masurier G, Moreau K, Mrozek J, Oppert JM, Raustorp A, Strath SJ, Thompson D, Whitt-Glover MC, Wilde B, Wojcik JR. BMI-referenced cut points for pedometer-determined steps per day in adults. J Phys Act Health. 2008;5(Suppl 1):S126–139.
    1. Zhang JG, Ohta T, Ishikawa-Takata K, Tabata I, Miyashita M. Effects of daily activity recorded by pedometer on peak oxygen consumption (VO2peak), ventilatory threshold and leg extension power in 30- to 69-year-old Japanese without exercise habit. Eur J Appl Physiol. 2003;90(1–2):109–113. doi: 10.1007/s00421-003-0860-0.
    1. Shimizu K, Kimura F, Akimoto T, Akama T, Kuno S, Kono I. Effect of free-living daily physical activity on salivary secretory IgA in elderly. Med Sci Sports Exerc. 2007;39(4):593–598. doi: 10.1249/mss.0b013e318031306d.
    1. Tudor-Locke C, Giles-Corti B, Knuiman M, McCormack G. Tracking of pedometer-determined physical activity in adults who relocate: results from RESIDE. Int J Behav Nutr Phys Act. 2008;5:39. doi: 10.1186/1479-5868-5-39.
    1. Yamakawa K, Tsai CK, Haig AJ, Miner JA, Harris MJ. Relationship between ambulation and obesity in older persons with and without low back pain. Int J Obes Relat Metab Disord. 2004;28(1):137–143. doi: 10.1038/sj.ijo.0802478.
    1. King WC, Belle SH, Brach JS, Simkin-Silverman LR, Soska T, Kriska AM. Objective measures of neighborhood environment and physical activity in older women. Am J Prev Med. 2005;28(5):461–469. doi: 10.1016/j.amepre.2005.02.001.
    1. Swartz A, Strath S, Parker S, Miller N, Cieslik L. Ambulatory activity and body mass index in white and non-white older adults. J Phys Act Health. 2007;4(3):294–304.
    1. Tudor-Locke C, Sisson SB, Collova T, Lee SM, Swan PD. Pedometer-determined step count guidelines for classifying walking intensity in a young ostensibly healthy population. Can J Appl Physiol. 2005;30(6):666–676.
    1. Tudor-Locke C, Williams JE, Reis JP, Pluto D. Utility of pedometers for assessing physical activity: construct validity. Sports Med. 2004;34(5):281–291. doi: 10.2165/00007256-200434050-00001.
    1. Tudor-Locke C, McClain JJ, Hart TL, Sisson SB, Washington TL. Pedometry methods for assessing free-living youth. Res Q Exerc Sport. 2009;80(2):175–184.
    1. Schneider PL, Crouter SE, Bassett DR. Pedometer measures of free-living physical activity: comparison of 13 models. Med Sci Sports Exerc. 2004;36(2):331–335. doi: 10.1249/01.MSS.0000113486.60548.E9.
    1. Le Masurier GC, Lee SM, Tudor-Locke C. Motion sensor accuracy under controlled and free-living conditions. Med Sci Sports Exerc. 2004;36(5):905–910. doi: 10.1249/01.MSS.0000126777.50188.73.
    1. Crouter SE, Schneider PL, Karabulut M, Bassett DR Jr. Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med Sci Sports Exerc. 2003;35(8):1455–1460. doi: 10.1249/01.MSS.0000078932.61440.A2.
    1. Le Masurier GC, Tudor-Locke C. Comparison of pedometer and accelerometer accuracy under controlled conditions. Med Sci Sports Exerc. 2003;35(5):867–871. doi: 10.1249/01.MSS.0000064996.63632.10.
    1. Karabulut M, Crouter SE, Bassett DR Jr. Comparison of two waist-mounted and two ankle-mounted electronic pedometers. Eur J Appl Physiol. 2005;95(4):335–343. doi: 10.1007/s00421-005-0018-3.
    1. Tudor-Locke C, Ainsworth BE, Thompson RW, Matthews CE. Comparison of pedometer and accelerometer measures of free-living physical activity. Med Sci Sports Exerc. 2002;34(12):2045–2051. doi: 10.1097/00005768-200212000-00027.
    1. Frisard MI, Fabre JM, Russell RD, King CM, DeLany JP, Wood RH, Ravussin E. Physical activity level and physical functionality in nonagenarians compared to individuals aged 60–74 years. J Gerontol A Biol Sci Med Sci. 2007;62(7):783–788.
    1. Westerterp KR, Meijer EP. Physical activity and parameters of aging: a physiological perspective. J Gerontol A Biol Sci Med Sci. 2001;56(Spec No 2):7–12.
    1. Tudor-Locke C, Burkett L, Reis JP, Ainsworth BE, Macera CA, Wilson DK. How many days of pedometer monitoring predict weekly physical activity in adults? Prev Med. 2005;40(3):293–298. doi: 10.1016/j.ypmed.2004.06.003.
    1. Felton GM, Tudor-Locke C, Burkett L. Reliability of pedometer-determined free-living physical activity data in college women. Res Q Exerc Sport. 2006;77(3):304–308.
    1. Schonhofer B, Ardes P, Geibel M, Kohler D, Jones PW. Evaluation of a movement detector to measure daily activity in patients with chronic lung disease. Eur Respir J. 1997;10(12):2814–2819. doi: 10.1183/09031936.97.10122814.
    1. Sieminski DJ, Cowell LL, Montgomery PS, Pillai SB, Gardner AW. Physical activity monitoring in patients with peripheral arterial occlusive disease. J Cardiopulm Rehabil. 1997;17(1):43–47. doi: 10.1097/00008483-199701000-00006.
    1. Rowe DA, Kemble CD, Robinson TS, Mahar MT. Daily walking in older adults: day-to-day variability and criterion-referenced validity of total daily step counts. J Phys Act Health. 2007;4(4):434–446.
    1. Marshall AL. Should all steps count when using a pedometer as a measure of physical activity in older adults? J Phys Act Health. 2007;4:305–314.
    1. Richardson CR, Newton TL, Abraham JJ, Sen A, Jimbo M, Swartz AM. A meta-analysis of pedometer-based walking interventions and weight loss. Ann Fam Med. 2008;6(1):69–77. doi: 10.1370/afm.761.
    1. Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, Stave CD, Olkin I, Sirard JR. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298(19):2296–2304. doi: 10.1001/jama.298.19.2296.
    1. King WC, Brach JS, Belle S, Killingsworth R, Fenton M, Kriska AM. The relationship between convenience of destinations and walking levels in older women. Am J Health Promot. 2003;18(1):74–82.
    1. Fukukawa Y, Nakashima C, Tsuboi S, Kozakai R, Doyo W, Niino N, Ando F, Shimokata H. Age differences in the effect of physical activity on depressive symptoms. Psychol Aging. 2004;19(2):346–351. doi: 10.1037/0882-7974.19.2.346.

Source: PubMed

3
Suscribir