Differentiated Thyroid Cancer: A Health Economic Review

Klaas Van Den Heede, Neil S Tolley, Aimee N Di Marco, Fausto F Palazzo, Klaas Van Den Heede, Neil S Tolley, Aimee N Di Marco, Fausto F Palazzo

Abstract

The incidence of differentiated thyroid cancer (DTC) is rising, mainly because of an increased detection of asymptomatic thyroid nodularity revealed by the liberal use of thyroid ultrasound. This review aims to reflect on the health economic considerations associated with the increasing diagnosis and treatment of DTC. Overdiagnosis and the resulting overtreatment have led to more surgical procedures, increasing health care and patients' costs, and a large pool of community-dwelling thyroid cancer follow-up patients. Additionally, the cost of thyroid surgery seems to increase year on year even when inflation is taken into account. The increased healthcare costs and spending have placed significant pressure to identify potential factors associated with these increased costs. Some truly ground-breaking work in health economics has been undertaken, but more cost-effectiveness studies and micro-cost analyses are required to evaluate expenses and guide future solutions.

Keywords: cost-benefit analysis; economics; medical; thyroid neoplasms.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Vanderpump M.P. The Epidemiology of Thyroid Disease. Br. Med. Bull. 2011;99:39–51. doi: 10.1093/bmb/ldr030.
    1. Reiners C., Wegscheider K., Schicha H., Theissen P., Vaupel R., Wrbitzky R., Schumm-Draeger P.M. Prevalence of Thyroid Disorders in the Working Population of Germany: Ultrasonography Screening in 96,278 Unselected Employees. Thyroid. 2004;14:926–932. doi: 10.1089/thy.2004.14.926.
    1. Haugen B.R., Alexander E.K., Bible K.C., Doherty G.M., Mandel S.J., Nikiforov Y.E., Pacini F., Randolph G.W., Sawka A.M., Schlumberger M., et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1–133. doi: 10.1089/thy.2015.0020.
    1. Filetti S., Durante C., Hartl D., Leboulleux S., Locati L.D., Newbold K., Papotti M.G., Berruti A., ESMO Guidelines Committee Thyroid Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2019;30:1856–1883. doi: 10.1093/annonc/mdz400.
    1. Pellegriti G., Frasca F., Regalbuto C., Squatrito S., Vigneri R. Worldwide Increasing Incidence of Thyroid Cancer: Update on Epidemiology and Risk Factors. J. Cancer Epidemiol. 2013;2013:965212. doi: 10.1155/2013/965212.
    1. La Vecchia C., Malvezzi M., Bosetti C., Garavello W., Bertuccio P., Levi F., Negri E. Thyroid Cancer Mortality and Incidence: A Global Overview. Int. J. Cancer. 2015;136:2187–2195. doi: 10.1002/ijc.29251.
    1. Siegel R.L., Miller K.D., Jemal A. Cancer Statistics, 2019. CA Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551.
    1. Rahib L., Smith B.D., Aizenberg R., Rosenzweig A.B., Fleshman J.M., Matrisian L.M. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res. 2014;74:2913–2921. doi: 10.1158/0008-5472.CAN-14-0155.
    1. Chen A.Y., Jemal A., Ward E.M. Increasing Incidence of Differentiated Thyroid Cancer in the United States, 1988–2005. Cancer. 2009;115:3801–3807. doi: 10.1002/cncr.24416.
    1. Ahn H.S., Kim H.J., Welch H.G. Korea’s Thyroid-Cancer “Epidemic”—Screening and Overdiagnosis. N. Engl. J. Med. 2014;371:1765–1767. doi: 10.1056/NEJMp1409841.
    1. Smittenaar C.R., Petersen K.A., Stewart K., Moitt N. Cancer Incidence and Mortality Projections in the UK until 2035. Br. J. Cancer. 2016;115:1147–1155. doi: 10.1038/bjc.2016.304.
    1. Furuya-Kanamori L., Bell K.J.L., Clark J., Glasziou P., Doi S.A.R. Prevalence of Differentiated Thyroid Cancer in Autopsy Studies over Six Decades: A Meta-Analysis. J. Clin. Oncol. 2016;34:3672–3679. doi: 10.1200/JCO.2016.67.7419.
    1. Decallonne B., van den Bruel A., Macq G., Elaut N., de Schutter H. The Impact of Regional Variation in Clinical Practice on Thyroid Cancer Diagnosis: A National Population-Based Study. Eur. Thyroid J. 2020;9:32–39. doi: 10.1159/000504046.
    1. Janovsky C., Bittencourt M.S., Novais M.A.P., Maciel R.M.B., Biscolla R.P.M., Zucchi P. Thyroid Cancer Burden and Economic Impact on the Brazilian Public Health System. Arch. Endocrinol. Metab. 2018;62:537–544. doi: 10.20945/2359-3997000000074.
    1. Van den Bruel A., Francart J., Dubois C., Adam M., Vlayen J., de Schutter H., Stordeur S., Decallonne B. Regional Variation in Thyroid Cancer Incidence in Belgium Is Associated with Variation in Thyroid Imaging and Thyroid Disease Management. J. Clin. Endocrinol. Metab. 2013;98:4063–4071. doi: 10.1210/jc.2013-1705.
    1. Golden S.H., Brown A., Cauley J.A., Chin M.H., Gary-Webb T.L., Kim C., Sosa J.A., Sumner A.E., Anton B. Health Disparities in Endocrine Disorders: Biological, Clinical, and Nonclinical Factors—An Endocrine Society Scientific Statement. J. Clin. Endocrinol. Metab. 2012;97:E1579–E1639. doi: 10.1210/jc.2012-2043.
    1. Jegerlehner S., Bulliard J.L., Aujesky D., Rodondi N., Germann S., Konzelmann I., Chiolero A., Group N.W. Overdiagnosis and Overtreatment of Thyroid Cancer: A Population-Based Temporal Trend Study. PLoS ONE. 2017;12:e0179387. doi: 10.1371/journal.pone.0179387.
    1. Demoury C., de Schutter H., Faes C., Carbonnelle S., Fierens S., Molenberghs G., van Damme N., van Bladel L., van Nieuwenhuyse A., Vleminckx C. Thyroid Cancer Incidence Near Nuclear Sites in Belgium: An Ecological Study at Small Geographical Level. Int. J. Cancer. 2020;146:3034–3043. doi: 10.1002/ijc.32796.
    1. Schlumberger M., le Guen B. Nuclear-Power-Plant Accidents: Thyroid Cancer Incidence and Radiation-Related Health Effects from the Chernobyl Accident. Med. Sci. 2012;28:746–756. doi: 10.1051/medsci/2012288017.
    1. Morris L.G.T. Thyroid Cancer Screening after Nuclear Accidents. JAMA Otolaryngol. Head Neck Surg. 2019;145:79. doi: 10.1001/jamaoto.2018.3137.
    1. Zimmermann M.B., Boelaert K. Iodine Deficiency and Thyroid Disorders. Lancet Diabetes Endocrinol. 2015;3:286–295. doi: 10.1016/S2213-8587(14)70225-6.
    1. Lind P., Langsteger W., Molnar M., Gallowitsch H.J., Mikosch P., Gomez I. Epidemiology of Thyroid Diseases in Iodine Sufficiency. Thyroid. 1998;8:1179–1183. doi: 10.1089/thy.1998.8.1179.
    1. Besic N., Hocevar M., Zgajnar J. Lower Incidence of Anaplastic Carcinoma after Higher Iodination of Salt in Slovenia. Thyroid. 2010;20:623–626. doi: 10.1089/thy.2009.0404.
    1. Black W.C., Welch H.G. Advances in Diagnostic Imaging and Overestimations of Disease Prevalence and the Benefits of Therapy. N. Engl. J. Med. 1993;328:1237–1243. doi: 10.1056/NEJM199304293281706.
    1. Davies L., Welch H.G. Increasing Incidence of Thyroid Cancer in the United States, 1973–2002. JAMA. 2006;295:2164–2167. doi: 10.1001/jama.295.18.2164.
    1. Fagin J.A., Wells S.A., Jr. Biologic and Clinical Perspectives on Thyroid Cancer. N. Engl. J. Med. 2016;375:1054–1067. doi: 10.1056/NEJMra1501993.
    1. Kaliszewski K., Diakowska D., Wojtczak B., Rudnicki J. Cancer Screening Activity Results in Overdiagnosis and Overtreatment of Papillary Thyroid Cancer: A 10-Year Experience at a Single Institution. PLoS ONE. 2020;15:e0236257. doi: 10.1371/journal.pone.0236257.
    1. Obuchowski N.A., Graham R.J., Baker M.E., Powell K.A. Ten Criteria for Effective Screening: Their Application to Multislice CT Screening for Pulmonary and Colorectal Cancers. AJR Am. J. Roentgenol. 2001;176:1357–1362. doi: 10.2214/ajr.176.6.1761357.
    1. Black W.C., Welch H.G. Screening for Disease. AJR Am. J. Roentgenol. 1997;168:3–11. doi: 10.2214/ajr.168.1.8976910.
    1. Mitchell A.L., Gandhi A., Scott-Coombes D., Perros P. Management of Thyroid Cancer: United Kingdom National Multidisciplinary Guidelines. J. Laryngol. Otol. 2016;130:S150–S160. doi: 10.1017/S0022215116000578.
    1. Jin J. JAMA PATIENT PAGE. The US Preventive Services Task Force. JAMA. 2016;315:1804. doi: 10.1001/jama.2016.2663.
    1. Ahn H.S., Kim H.J., Kim K.H., Lee Y.S., Han S.J., Kim Y., Ko M.J., Brito J.P. Thyroid Cancer Screening in South Korea Increases Detection of Papillary Cancers with No Impact on Other Subtypes or Thyroid Cancer Mortality. Thyroid. 2016;26:1535–1540. doi: 10.1089/thy.2016.0075.
    1. Ahn H.S., Welch H.G. South Korea’s Thyroid-Cancer “Epidemic”—Turning the Tide. N. Engl. J. Med. 2015;373:2389–2390. doi: 10.1056/NEJMc1507622.
    1. Leboulleux S., Tuttle R.M., Pacini F., Schlumberger M. Papillary Thyroid Microcarcinoma: Time to Shift from Surgery to Active Surveillance? Lancet Diabetes Endocrinol. 2016;4:933–942. doi: 10.1016/S2213-8587(16)30180-2.
    1. Ito Y., Oda H., Miyauchi A. Insights and Clinical Questions About the Active Surveillance of low-Risk Papillary Thyroid Microcarcinomas [Review] Endocr. J. 2016;63:323–328. doi: 10.1507/endocrj.EJ15-0637.
    1. Inabnet W.B., 3rd, Palazzo F., Sosa J.A., Kriger J., Aspinall S., Barczynski M., Doherty G., Iacobone M., Nordenstrom E., Scott-Coombes D., et al. Correlating the Bethesda System for Reporting Thyroid Cytopathology with Histology and Extent of Surgery: A Review of 21,746 Patients from Four Endocrine Surgery Registries across Two Continents. World J. Surg. 2020;44:426–435. doi: 10.1007/s00268-019-05258-7.
    1. Balentine C.J., Vanness D.J., Schneider D.F. Cost-Effectiveness of Lobectomy versus Genetic Testing (Afirma(R)) for Indeterminate Thyroid Nodules: Considering the Costs of Surveillance. Surgery. 2018;163:88–96. doi: 10.1016/j.surg.2017.10.004.
    1. Nikiforova M.N., Mercurio S., Wald A.I., Barbi de Moura M., Callenberg K., Santana-Santos L., Gooding W.E., Yip L., Ferris R.L., Nikiforov Y.E. Analytical Performance of the ThyroSeq v3 Genomic Classifier for Cancer Diagnosis in Thyroid Nodules. Cancer. 2018;124:1682–1690. doi: 10.1002/cncr.31245.
    1. Labourier E. Utility and Cost-Effectiveness of Molecular Testing in Thyroid Nodules with Indeterminate Cytology. Clin. Endocrinol. (Oxf) 2016;85:624–631. doi: 10.1111/cen.13096.
    1. Sciacchitano S., Lavra L., Ulivieri A., Magi F., de Francesco G.P., Bellotti C., Salehi L.B., Trovato M., Drago C., Bartolazzi A. Comparative Analysis of Diagnostic Performance, Feasibility and Cost of Different Test-Methods for Thyroid Nodules with Indeterminate Cytology. Oncotarget. 2017;8:49421–49442. doi: 10.18632/oncotarget.17220.
    1. Labourier E., Shifrin A., Busseniers A.E., Lupo M.A., Manganelli M.L., Andruss B., Wylie D., Beaudenon-Huibregtse S. Molecular Testing for miRNA, mRNA, and DNA on Fine-Needle Aspiration Improves the Preoperative Diagnosis of Thyroid Nodules with Indeterminate Cytology. J. Clin. Endocrinol. Metab. 2015;100:2743–2750. doi: 10.1210/jc.2015-1158.
    1. Leiker A.J., Yen T.W., Cheung K., Evans D.B., Wang T.S. Cost Analysis of Thyroid Lobectomy and Intraoperative Frozen Section versus Total Thyroidectomy in Patients with a Cytologic Diagnosis of “Suspicious for Papillary Thyroid Cancer”. Surgery. 2013;154:1307–1313. doi: 10.1016/j.surg.2013.06.031.
    1. Sahli Z.T., Zhou S., Sharma A.K., Segev D.L., Massie A., Zeiger M.A., Mathur A. Rising Cost of Thyroid Surgery in Adult Patients. J. Surg. Res. 2021;260:28–37. doi: 10.1016/j.jss.2020.11.049.
    1. Adam M.A., Pura J., Gu L., Dinan M.A., Tyler D.S., Reed S.D., Scheri R., Roman S.A., Sosa J.A. Extent of Surgery for Papillary Thyroid Cancer Is Not Associated with Survival: An Analysis of 61,775 Patients. Ann. Surg. 2014;260:601–605. doi: 10.1097/SLA.0000000000000925. discussion 605–607.
    1. Gourin C.G., Tufano R.P., Forastiere A.A., Koch W.M., Pawlik T.M., Bristow R.E. Volume-Based Trends in Thyroid Surgery. Arch. Otolaryngol. Head Neck Surg. 2010;136:1191–1198. doi: 10.1001/archoto.2010.212.
    1. Lee J., Park J.H., Lee C.R., Chung W.Y., Park C.S. Long-Term Outcomes of Total Thyroidectomy versus Thyroid Lobectomy for Papillary Thyroid Microcarcinoma: Comparative Analysis after Propensity Score Matching. Thyroid. 2013;23:1408–1415. doi: 10.1089/thy.2012.0463.
    1. Bravo Vergel Y., Sculpher M. Quality-Adjusted Life Years. Pract. Neurol. 2008;8:175–182. doi: 10.1136/pn.2007.140186.
    1. Al-Qurayshi Z., Farag M., Shama M.A., Ibraheem K., Randolph G.W., Kandil E. Total Thyroidectomy versus Lobectomy in Small Nodules Suspicious for Papillary Thyroid Cancer: Cost-Effectiveness Analysis. Laryngoscope. 2020;130:2922–2926. doi: 10.1002/lary.28634.
    1. Aspinall S., Oweis D., Chadwick D. Effect of Surgeons’ Annual Operative Volume on the Risk of Permanent Hypoparathyroidism, Recurrent Laryngeal Nerve Palsy and Haematoma Following Thyroidectomy: Analysis of United Kingdom Registry of Endocrine and Thyroid Surgery (UKRETS) Langenbecks Arch. Surg. 2019;404:421–430. doi: 10.1007/s00423-019-01798-7.
    1. Nouraei S.A., Virk J.S., Middleton S.E., Aylin P., Mace A., Vaz F., Kaddour H., Darzi A., Tolley N.S. A National Analysis of Trends, Outcomes and Volume-Outcome Relationships in Thyroid Surgery. Clin. Otolaryngol. 2017;42:354–365. doi: 10.1111/coa.12730.
    1. Lorenz K., Raffaeli M., Barczynski M., Lorente-Poch L., Sancho J. Volume, Outcomes, and Quality Standards in Thyroid Surgery: An Evidence-Based Analysis-European Society of Endocrine Surgeons (ESES) Positional Statement. Langenbecks Arch. Surg. 2020;405:401–425. doi: 10.1007/s00423-020-01907-x.
    1. Patel N., Scott-Coombes D. Impact of Surgical Volume and Surgical Outcome Assessing Registers on the Quality of Thyroid Surgery. Best Pract. Res. Clin. Endocrinol. Metab. 2019;33:101317. doi: 10.1016/j.beem.2019.101317.
    1. Mercante G., Anelli A., Giannarelli D., Giordano D., Sinopoli I., Ferreli F., Digiesi G., Appetecchia M.L., Barnabei A., Cristalli G., et al. Cost-Effectiveness in Transient Hypocalcemia Post-Thyroidectomy. Head Neck. 2019;41:3940–3947. doi: 10.1002/hed.25934.
    1. Wu S.Y., Terrell J., Park A., Perrier N. Understanding Thyroidectomy Cost Variations among National Cancer Institute-Designated Cancer Centers. World J. Surg. 2020;44:385–392. doi: 10.1007/s00268-019-05176-8.
    1. Biron V.L., Bang H., Farwell D.G., Bewley A.F. National Trends and Factors Associated with Hospital Costs Following Thyroid Surgery. Thyroid. 2015;25:823–829. doi: 10.1089/thy.2014.0495.
    1. Russell L.B., Gold M.R., Siegel J.E., Daniels N., Weinstein M.C. The Role of Cost-Effectiveness Analysis in Health and Medicine. Panel on Cost-Effectiveness in Health and Medicine. JAMA. 1996;276:1172–1177. doi: 10.1001/jama.1996.03540140060028.
    1. Garas G., Okabayashi K., Ashrafian H., Shetty K., Palazzo F., Tolley N., Darzi A., Athanasiou T., Zacharakis E. Which Hemostatic Device in Thyroid Surgery? A Network Meta-Analysis of Surgical Technologies. Thyroid. 2013;23:1138–1150. doi: 10.1089/thy.2012.0588.
    1. Van Slycke S., Gillardin J.P., van den Heede K., Minguet J., Vermeersch H., Brusselaers N. Comparison of the Harmonic Focus and the Thunderbeat for Open Thyroidectomy. Langenbecks Arch. Surg. 2016;401:851–859. doi: 10.1007/s00423-016-1448-6.
    1. Konturek A., Szpyra B., Stopa-Barczynska M., Barczynski M. Energy-Based Devices for Hemostasis in Thyroid Surgery. Gland Surg. 2020;9:S153–S158. doi: 10.21037/gs.2019.10.17.
    1. Contin P., Goossen K., Grummich K., Jensen K., Schmitz-Winnenthal H., Buchler M.W., Diener M.K. ENERgized Vessel Sealing Systems versus CONventional Hemostasis Techniques in Thyroid Surgery—The ENERCON Systematic Review and Network Meta-Analysis. Langenbecks Arch. Surg. 2013;398:1039–1056. doi: 10.1007/s00423-013-1137-7.
    1. Hua N., Quimby A.E., Johnson-Obaseki S. Comparing Hematoma Incidence between Hemostatic Devices in Total Thyroidectomy: A Systematic Review and Meta-Analysis. Otolaryngol. Head Neck Surg. 2019;161:770–778. doi: 10.1177/0194599819865248.
    1. Cheng H., Soleas I.M., Ferko N.C., Cameron C.G., Clymer J.W., Amaral J.F. Hospital Costs Associated with Thyroidectomy Performed with a Harmonic Device Compared to Conventional Techniques: A Systematic Review and Meta-Analysis. J. Med. Econ. 2016;19:750–758. doi: 10.3111/13696998.2016.1168826.
    1. Tae K. Cost-Effectiveness of Intraoperative Neural Monitoring in Thyroid Surgery: Comment on “Analyzing Cost-Effectiveness of Neural-Monitoring in Recurrent Laryngeal Nerve Recovery Course in Thyroid Surgery”. Gland Surg. 2019;8:304–306. doi: 10.21037/gs.2018.12.02.
    1. Al-Qurayshi Z., Kandil E., Randolph G.W. Cost-Effectiveness of Intraoperative Nerve Monitoring in Avoidance of Bilateral Recurrent Laryngeal Nerve Injury in Patients Undergoing Total Thyroidectomy. Br. J. Surg. 2017;104:1523–1531. doi: 10.1002/bjs.10582.
    1. Rocke D.J., Goldstein D.P., de Almeida J.R. A Cost-Utility Analysis of Recurrent Laryngeal Nerve Monitoring in the Setting of Total Thyroidectomy. JAMA Otolaryngol. Head Neck Surg. 2016;142:1199–1205. doi: 10.1001/jamaoto.2016.2860.
    1. Wang T., Kim H.Y., Wu C.W., Rausei S., Sun H., Pergolizzi F.P., Dionigi G. Analyzing Cost-Effectiveness of Neural-Monitoring in Recurrent Laryngeal Nerve Recovery Course in Thyroid Surgery. Int. J. Surg. 2017;48:180–188. doi: 10.1016/j.ijsu.2017.10.003.
    1. Schneider R., Randolph G.W., Dionigi G., Wu C.W., Barczynski M., Chiang F.Y., Al-Quaryshi Z., Angelos P., Brauckhoff K., Cernea C.R., et al. International Neural Monitoring Study Group Guideline 2018 Part I: Staging Bilateral Thyroid Surgery with Monitoring Loss of Signal. Laryngoscope. 2018;128(Suppl. 3):S1–S17. doi: 10.1002/lary.27359.
    1. Vlasses P.H., Besarab A., Lottes S.R., Conner D.P., Green P.J., Gault M.H. False-Positive Digoxin Measurements Due to Conjugated Metabolite Accumulation in Combined Renal and Hepatic Dysfunction. Am. J. Nephrol. 1987;7:355–359. doi: 10.1159/000167501.
    1. Van Slycke S., van den Heede K., Brusselaers N., Vermeersch H. Feasibility of Autofluorescence for Parathyroid Glands During Thyroid Surgery and the Risk of Hypocalcemia: First Results in Belgium and Review of the Literature. Surg. Innov. 2020:1553350620980263. doi: 10.1177/1553350620980263.
    1. Di Marco A.N., Palazzo F.F. Near-Infrared Autofluorescence in Thyroid and Parathyroid Surgery. Gland Surg. 2020;9:S136–S146. doi: 10.21037/gs.2020.01.04.
    1. Aidan P., Arora A., Lorincz B., Tolley N., Garas G. Robotic Thyroid Surgery: Current Perspectives and Future Considerations. ORL J. Otorhinolaryngol. Relat. Spec. 2018;80:186–194. doi: 10.1159/000488354.
    1. Lee S.R., Lee E.S., Eum H.L., Lee Y.J., Lee S.W., Park J.Y., Suh D.S., Kim D.Y., Kim S.H., Kim Y.M., et al. New Surgical Technique for Robotic Myomectomy: Continuous Locking Suture on Myoma (LSOM) Technique. J. Clin. Med. 2021;10:654. doi: 10.3390/jcm10040654.
    1. Razavi C.R., Tanavde V.A., Kim A.S., Shaear M., Tufano R.P., Russell J.O. The Variable Direct Cost and Cost Drivers of Transoral Endoscopic Thyroidectomy Vestibular Approach. Gland Surg. 2021;10:521–528. doi: 10.21037/gs-20-653.
    1. Luster M., Aktolun C., Amendoeira I., Barczynski M., Bible K.C., Duntas L.H., Elisei R., Handkiewicz-Junak D., Hoffmann M., Jarzab B., et al. European Perspective on 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: Proceedings of an Interactive International Symposium. Thyroid. 2019;29:7–26. doi: 10.1089/thy.2017.0129.
    1. Nicholson K.J., Smith K.J., McCoy K.L., Carty S.E., Yip L. A Comparative Cost-Utility Analysis of Postoperative Calcium Supplementation Strategies Used in the Current Management of Hypocalcemia. Surgery. 2020;167:137–143. doi: 10.1016/j.surg.2019.05.077.
    1. Gardner G.M., Smith M.M., Yaremchuk K.L., Peterson E.L. The Cost of Vocal Fold Paralysis after Thyroidectomy. Laryngoscope. 2013;123:1455–1463. doi: 10.1002/lary.23548.
    1. Naunheim M.R., Song P.C., Franco R.A., Alkire B.C., Shrime M.G. Surgical Management of Bilateral Vocal Fold Paralysis: A Cost-Effectiveness Comparison of Two Treatments. Laryngoscope. 2017;127:691–697. doi: 10.1002/lary.26253.
    1. Orlov S., Salari F., Kashat L., Freeman J.L., Vescan A., Witterick I.J., Walfish P.G. Post-Operative Stimulated Thyroglobulin and Neck Ultrasound as Personalized Criteria for Risk Stratification and Radioactive Iodine Selection in Low- and Intermediate-Risk Papillary Thyroid Cancer. Endocrine. 2015;50:130–137. doi: 10.1007/s12020-015-0575-0.
    1. Cheng S.Y., Ringel M.D. Frontiers in Thyroid Cancer: December 2009. Thyroid. 2009;19:1297–1298. doi: 10.1089/thy.2009.1612.
    1. Lubitz C.C., Sosa J.A. The Changing Landscape of Papillary Thyroid Cancer: Epidemiology, Management, and the Implications for Patients. Cancer. 2016;122:3754–3759. doi: 10.1002/cncr.30201.
    1. Mongelli M.N., Giri S., Peipert B.J., Helenowski I.B., Yount S.E., Sturgeon C. Financial Burden and Quality of Life among Thyroid Cancer Survivors. Surgery. 2020;167:631–637. doi: 10.1016/j.surg.2019.11.014.
    1. Enewold L., Zhu K., Ron E., Marrogi A.J., Stojadinovic A., Peoples G.E., Devesa S.S. Rising Thyroid Cancer Incidence in the United States by Demographic and Tumor Characteristics, 1980–2005. Cancer Epidemiol. Biomarkers Prev. 2009;18:784–791. doi: 10.1158/1055-9965.EPI-08-0960.
    1. Lubitz C.C., Kong C.Y., McMahon P.M., Daniels G.H., Chen Y., Economopoulos K.P., Gazelle G.S., Weinstein M.C. Annual Financial Impact of Well-Differentiated Thyroid Cancer Care in the United States. Cancer. 2014;120:1345–1352. doi: 10.1002/cncr.28562.
    1. Ito Y., Uruno T., Nakano K., Takamura Y., Miya A., Kobayashi K., Yokozawa T., Matsuzuka F., Kuma S., Kuma K., et al. An Observation Trial without Surgical Treatment in Patients with Papillary Microcarcinoma of the Thyroid. Thyroid. 2003;13:381–387. doi: 10.1089/105072503321669875.
    1. Ito Y., Miyauchi A. Nonoperative Management of Low-Risk Differentiated Thyroid Carcinoma. Curr. Opin. Oncol. 2015;27:15–20. doi: 10.1097/CCO.0000000000000143.
    1. Miyauchi A. Clinical Trials of Active Surveillance of Papillary Microcarcinoma of the Thyroid. World J. Surg. 2016;40:516–522. doi: 10.1007/s00268-015-3392-y.
    1. Venkatesh S., Pasternak J.D., Beninato T., Drake F.T., Kluijfhout W.P., Liu C., Gosnell J.E., Shen W.T., Clark O.H., Duh Q.Y., et al. Cost-Effectiveness of Active Surveillance versus Hemithyroidectomy for Micropapillary Thyroid Cancer. Surgery. 2017;161:116–126. doi: 10.1016/j.surg.2016.06.076.
    1. Saravana-Bawan B., Bajwa A., Paterson J., McMullen T. Active Surveillance of Low-Risk Papillary Thyroid Cancer: A Meta-Analysis. Surgery. 2020;167:46–55. doi: 10.1016/j.surg.2019.03.040.
    1. Reeve B.B., Potosky A.L., Smith A.W., Han P.K., Hays R.D., Davis W.W., Arora N.K., Haffer S.C., Clauser S.B. Impact of Cancer on Health-Related Quality of Life of Older Americans. J. Natl. Cancer Inst. 2009;101:860–868. doi: 10.1093/jnci/djp123.
    1. Meraya A.M., Raval A.D., Sambamoorthi U. Chronic Condition Combinations and Health Care Expenditures and Out-of-Pocket Spending Burden among Adults, Medical Expenditure Panel Survey, 2009 and 2011. Prev. Chronic Dis. 2015;12:E12. doi: 10.5888/pcd12.140388.
    1. Aschebrook-Kilfoy B., Schechter R.B., Shih Y.C., Kaplan E.L., Chiu B.C., Angelos P., Grogan R.H. The Clinical and Economic Burden of a Sustained Increase in Thyroid Cancer Incidence. Cancer Epidemiol. Biomarkers Prev. 2013;22:1252–1259. doi: 10.1158/1055-9965.EPI-13-0242.
    1. Boltz M.M., Hollenbeak C.S., Schaefer E., Goldenberg D., Saunders B.D. Attributable Costs of Differentiated Thyroid Cancer in the Elderly Medicare Population. Surgery. 2013;154:1363–1369. doi: 10.1016/j.surg.2013.06.042. discussion 1369–1370.
    1. Berger A., Edelsberg J., Chung K., Nguyen A., Stepan D., Oster G. Healthcare (HC) Utilization and Costs in Patients (pts) with Newly Diagnosed Metastatic Thyroid Cancer (mTC) J. Clin. Oncol. 2007;25:170–182. doi: 10.1200/jco.2007.25.18_suppl.17082.
    1. Iadeluca L., Mardekian J., Chander P., Hopps M., Makinson G.T. The Burden of Selected Cancers in the US: Health Behaviors and Health Care Resource Utilization. Cancer Manag. Res. 2017;9:721–730. doi: 10.2147/CMAR.S143148.
    1. Furuya-Kanamori L., Sedrakyan A., Onitilo A.A., Bagheri N., Glasziou P., Doi S.A.R. Differentiated Thyroid Cancer: Millions Spent with No Tangible Gain? Endocr. Relat. Cancer. 2018;25:51–57. doi: 10.1530/ERC-17-0397.
    1. Lang B.H., Wong C.K., Chan C.T. Initial Attributable Cost and Economic Burden of Clinically-Relevant Differentiated Thyroid Cancer: A Health Care Service Provider Perspective. Eur. J. Surg. Oncol. 2015;41:758–765. doi: 10.1016/j.ejso.2015.01.019.
    1. Finnerty B.M., Brunaud L., Mirallie E., McIntyre C., Aronova A., Fahey T.J., 3rd, Zarnegar R. Cost Disparity between Health Care Systems—It’s Not the Surgeons: A Cost Analysis of Thyroid Cancer Care between the United States and France. Surgery. 2016;159:132–140. doi: 10.1016/j.surg.2015.06.049.
    1. Bhattacharjee S., Khobrani M., Alrabiah Z., Bilal J., Riaz I.B. Healthcare Expenditures among Community-Dwelling Adults with Thyroid Cancer in the United States: A Propensity Score Matched Analysis. Heliyon. 2019;5:e01995. doi: 10.1016/j.heliyon.2019.e01995.
    1. White C., Weinstein M.C., Fingeret A.L., Randolph G.W., Miyauchi A., Ito Y., Zhan T., Ali A., Gazelle G.S., Lubitz C.C. Is Less More? A Microsimulation Model Comparing Cost-Effectiveness of the Revised American Thyroid Association’s 2015 to 2009 Guidelines for the Management of Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Ann. Surg. 2020;271:765–773. doi: 10.1097/SLA.0000000000003074.
    1. Hyun M.K., Kim J.H., Kwon J.W. Incidence of Thyroid Cancer and Medical Cost among Patients with Newly Diagnosed Thyroid Nodules in Korea: A Retrospective Cohort Study Using Nationwide Data. J. Cancer Res. Ther. 2019;15:676–680. doi: 10.4103/0973-1482.204895.
    1. Ver Hoeve E.S., Ali-Akbarian L., Price S.N., Lothfi N.M., Hamann H.A. Patient-Reported Financial Toxicity, Quality of Life, and Health Behaviors in Insured US Cancer Survivors. Support Care Cancer. 2021;29:349–358. doi: 10.1007/s00520-020-05468-z.
    1. Esserman L.J., Thompson I.M., Reid B., Nelson P., Ransohoff D.F., Welch H.G., Hwang S., Berry D.A., Kinzler K.W., Black W.C., et al. Addressing Overdiagnosis and Overtreatment in Cancer: A Prescription for Change. Lancet Oncol. 2014;15:e234–e242. doi: 10.1016/S1470-2045(13)70598-9.
    1. Canberk S. Precursor and Borderline Lesions of the Thyroid (Indolent Lesions of Epithelial Origin): From Theory to Practice. Gland Surg. 2020;9:1724–1734. doi: 10.21037/gs-20-429.
    1. Schnadig V.J. Overdiagnosis of Thyroid Cancer: Is This Not an Ethical Issue for Pathologists as Well as Radiologists and Clinicians? Arch. Pathol. Lab. Med. 2018;142:1018–1020. doi: 10.5858/arpa.2017-0510-ED.
    1. Culyer A.J., Newhouse J.P. Handbook of Health Economics. Elsevier North Holland; Amsterdam, The Netherlands: 2000.
    1. Neumann P.J., Sanders G.D. Cost-Effectiveness Analysis 2.0. N. Engl. J. Med. 2017;376:203–205. doi: 10.1056/NEJMp1612619.
    1. Xu X., Grossetta Nardini H.K., Ruger J.P. Micro-costing studies in the health and medical literature: Protocol for a systematic review. Syst. Rev. 2014;3:47. doi: 10.1186/2046-4053-3-47.
    1. Rutter C.M., Zaslavsky A.M., Feuer E.J. Dynamic microsimulation models for health outcomes: A review. Med. Decis. Making. 2011;31:10–18. doi: 10.1177/0272989X10369005.
    1. Latouche G., Ramaswami V. Introduction to Matrix Analytic Methods in Stochastic Modeling. SIAM; Philadelphia, PA, USA: 1999.

Source: PubMed

3
Suscribir