Enasidenib as maintenance following allogeneic hematopoietic cell transplantation for IDH2-mutated myeloid malignancies

Amir T Fathi, Haesook T Kim, Robert J Soiffer, Mark J Levis, Shuli Li, Annette S Kim, Alice S Mims, Zachariah DeFilipp, Areej El-Jawahri, Steven L McAfee, Andrew M Brunner, Rupa Narayan, Laura W Knight, Devon Kelley, Aj S Bottoms, Lindsey H Perry, Jonathan L Wahl, Jennifer Brock, Elayne Breton, Vincent T Ho, Yi-Bin Chen, Amir T Fathi, Haesook T Kim, Robert J Soiffer, Mark J Levis, Shuli Li, Annette S Kim, Alice S Mims, Zachariah DeFilipp, Areej El-Jawahri, Steven L McAfee, Andrew M Brunner, Rupa Narayan, Laura W Knight, Devon Kelley, Aj S Bottoms, Lindsey H Perry, Jonathan L Wahl, Jennifer Brock, Elayne Breton, Vincent T Ho, Yi-Bin Chen

Abstract

IDH2 (isocitrate dehydrogenase 2) mutations occur in approximately 15% of patients with acute myeloid leukemia (AML). The IDH2 inhibitor enasidenib was recently approved for IDH2-mutated relapsed or refractory AML. We conducted a multi-center, phase I trial of maintenance enasidenib following allogeneic hematopoietic cell transplantation (HCT) in patients with IDH2-mutated myeloid malignancies. Two dose levels, 50mg and 100mg daily were studied in a 3 × 3 dose-escalation design, with 10 additional patients treated at the recommended phase 2 dose (RP2D). Enasidenib was initiated between days 30 and 90 following HCT and continued for twelve 28-day cycles. Twenty-three patients were enrolled, of whom 19 initiated post-HCT maintenance. Two had myelodysplastic syndrome, and 17 had AML. All but 3 were in first complete remission. No dose limiting toxicities were observed, and the RP2D was established at 100mg daily. Attributable grade ≥3 toxicities were rare, with the most common being cytopenias. Eight patients stopped maintenance before completing 12 cycles, due to adverse events (n=3), pursuing treatment for graft-vs-host disease (GVHD) (n=2), clinician choice (n=1), relapse (n=1), and COVID infection (n=1). No cases of grade ≥3 acute GVHD were seen, and 12-month cumulative incidence of moderate/severe chronic GVHD was 42% (20-63%). Cumulative incidence of relapse was 16% (95% CI: 3.7-36%); 1 subject relapsed while receiving maintenance. Two-year progression-free and overall survival were 69% (95% CI: 39-86%) and 74% (95% CI, 44-90%), respectively. Enasidenib is safe, well-tolerated, with preliminary activity as maintenance therapy following HCT, and merits additional study. The study was registered at www.clinicaltrials.gov (#NCT03515512).

Conflict of interest statement

Conflicts-of-interest disclosure: A.T.F. has consulted for Agios, Celgene, Bristol Myers Squibb, Servier Pharmaceuticals, Forma Pharmaceuticals, Astellas, Amgen, Takeda, Immunogen, AbbVie, Mablytics, Ipsen, Genentech, EnClear, Orum, and Novartis. Z.D. has consulted for Syndax Pharmaceuticals, Kadmon, Omeros, Incyte, and MorphoSys. A.E.-J. has consulted for Novartis, GSK, and Incyte. A.M.B. has consulted for Acceleron, Agios, BMS/Celgene, CTI BioPharma, Gilead, Keros Therapeutics, Novartis, Taiho, and Takeda. Y.-B.C. has consulted for Incyte, Magenta, Moderna, Novartis, Gamida Cell, T-Scan, Actinium, and Equilium. The remaining authors declare no competing financial interests.

© 2022 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.

Figures

Graphical abstract
Graphical abstract
Figure 1.
Figure 1.
Number of patients with concurrentmutations on study.
Figure 2.
Figure 2.
Incidence of graft-vs-host disease. (A) cumulative incidence of grade II-IV aGVHD. (B) Cumulative incidence of cGVHD.
Figure 3.
Figure 3.
Survival, relapse, and non-relapse mortality. (A) OS, PFS, and GRFS. (B) Cumulative incidence of relapse and NRM.
Figure 4.
Figure 4.
Swim plot of post-HCT outcomes among patients receiving enasidenib maintenance therapy. On the left, a panel shows a heatmap for the status of IDH2 mutational burden before HCT and before enasidenib maintenance. The right panel shows a swim plot for time from HCT to death or last seen alive. Orange triangle indicates relapse, plus sign indicates death.

References

    1. Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–1152.
    1. Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. Lancet. 2018;392(10147):593–606.
    1. Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058–1066.
    1. Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10(12):1911–1918.
    1. Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17(3):225–234.
    1. DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–2398.
    1. Perl AE, Martinelli G, Cortes JE, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N Engl J Med. 2019;381(18):1728–1740.
    1. Stein EM, DiNardo CD, Fathi AT, et al. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood. 2019;133(7):676–687.
    1. DeFilipp Z, Chen YB. How I treat with maintenance therapy after allogeneic HCT. Blood. 2022 doi: 10.1182/blood.2021012412.
    1. Brunner AM, Li S, Fathi AT, et al. Haematopoietic cell transplantation with and without sorafenib maintenance for patients with FLT3-ITD acute myeloid leukaemia in first complete remission. Br J Haematol. 2016;175(3):496–504.
    1. Chen YB, Li S, Lane AA, et al. Phase I trial of maintenance sorafenib after allogeneic hematopoietic stem cell transplantation for fms-like tyrosine kinase 3 internal tandem duplication acute myeloid leukemia. Biol Blood Marrow Transplant. 2014;20(12):2042–2048.
    1. Burchert A, Bug G, Fritz LV, et al. Sorafenib maintenance after allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia with FLT3-internal tandem duplication mutation (SORMAIN) J Clin Oncol. 2020;38(26):2993–3002.
    1. Xuan L, Wang Y, Huang F, et al. Sorafenib maintenance in patients with FLT3-ITD acute myeloid leukaemia undergoing allogeneic haematopoietic stem-cell transplantation: an open-label, multicentre, randomised phase 3 trial. Lancet Oncol. 2020;21(9):1201–1212.
    1. Green CL, Evans CM, Zhao L, et al. The prognostic significance of IDH2 mutations in AML depends on the location of the mutation. Blood. 2011;118(2):409–412.
    1. Paschka P, Schlenk RF, Gaidzik VI, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010;28(22):3636–3643.
    1. Ravandi F, Patel K, Luthra R, et al. Prognostic significance of alterations in IDH enzyme isoforms in patients with AML treated with high-dose cytarabine and idarubicin. Cancer. 2012;118(10):2665–2673.
    1. Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–567.
    1. Stein EM, DiNardo CD, Pollyea DA, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–731.
    1. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–447.
    1. Filipovich AH, Weisdorf D, Pavletic S, et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant. 2005;11(12):945–956.
    1. Harris AC, Young R, Devine S, et al. International, multicenter standardization of acute graft-versus-host disease clinical data collection: a report from the Mount Sinai Acute GVHD International Consortium. Biol Blood Marrow Transplant. 2016;22(1):4–10.
    1. Kim HT, Armand P. Clinical endpoints in allogeneic hematopoietic stem cell transplantation studies: the cost of freedom. Biol Blood Marrow Transplant. 2013;19(6):860–866.
    1. DiNardo CD, Schuh AC, Stein EM, et al. Enasidenib plus azacitidine versus azacitidine alone in patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia (AG221-AML-005): a single-arm, phase 1b and randomised, phase 2 trial. Lancet Oncol. 2021;22(11):1597–1608.
    1. Montesinos P, Recher C, Vives S, et al. Agile: a global, randomized, double-blind, phase 3 study of ivosidenib + azacitidine versus placebo + azacitidine in patients with newly diagnosed acute myeloid leukemia with an idh1 mutation. Blood. 2021;138(suppl 1):697.
    1. Oshikawa G, Kakihana K, Saito M, et al. Post-transplant maintenance therapy with azacitidine and gemtuzumab ozogamicin for high-risk acute myeloid leukaemia. Br J Haematol. 2015;169(5):756–759.
    1. Sockel K, Bornhaeuser M, Mischak-Weissinger E, et al. Lenalidomide maintenance after allogeneic HSCT seems to trigger acute graft-versus-host disease in patients with high-risk myelodysplastic syndromes or acute myeloid leukemia and del(5q): results of the LENAMAINT trial. Haematologica. 2012;97(9):e34–35.
    1. Chen EC, Li S, Eisfeld AK, et al. Outcomes for patients with IDH-mutated acute myeloid leukemia undergoing allogeneic hematopoietic cell transplantation. Transplant Cell Ther. 2021;27(6):479 e1–479 e7.
    1. Salhotra A, Afkhami M, Yang D, et al. Allogeneic hematopoietic cell transplantation outcomes in patients carrying isocitrate dehydrogenase mutations. Clin Lymphoma Myeloma Leuk. 2019;19(7):e400–e405.
    1. Fathi AT, Dinardo CD, Kline I, et al. Alterations in serum bilirubin during enasidenib treatment in patients with or without UGT1A1 mutations. J Clin Oncol. 2018;36(suppl 15):e19003.
    1. Fathi AT, DiNardo CD, Kline I, et al. Differentiation syndrome associated with enasidenib, a selective inhibitor of mutant isocitrate dehydrogenase 2: analysis of a phase 1/2 study. JAMA Oncol. 2018;4(8):1106–1110.
    1. Norsworthy KJ, Mulkey F, Scott EC, et al. Differentiation syndrome with ivosidenib and enasidenib treatment in patients with relapsed or refractory IDH-mutated AML: a U.S. Food and Drug Administration systematic analysis. Clin Cancer Res. 2020;26(16):4280–4288.
    1. Fathi AT, Sadrzadeh H, Borger DR, et al. Prospective serial evaluation of 2-hydroxyglutarate, during treatment of newly diagnosed acute myeloid leukemia, to assess disease activity and therapeutic response. Blood. 2012;120(23):4649–4652.
    1. Balsat M, Renneville A, Thomas X, et al. Postinduction minimal residual disease predicts outcome and benefit from allogeneic stem cell transplantation in acute myeloid leukemia with NPM1 mutation: a study by the Acute Leukemia French Association Group. J Clin Oncol. 2017;35(2):185–193.
    1. Roboz GJ, Ravandi F, Wei AH, et al. Oral azacitidine prolongs survival of patients with AML in remission independent of measurable residual disease status. Blood. 2022;139(14):2145–2155.
    1. Schuurhuis GJ, Heuser M, Freeman S, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131(12):1275–1291.
    1. Thol F, Gabdoulline R, Liebich A, et al. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood. 2018;132(16):1703–1713.
    1. Venditti A, Piciocchi A, Candoni A, et al. GIMEMA AML1310 trial of risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia. Blood. 2019;134(12):935–945.

Source: PubMed

3
Suscribir