Distribution of nanoparticles throughout the cerebral cortex of rodents and non-human primates: Implications for gene and drug therapy

Ernesto A Salegio, Hillary Streeter, Nikhil Dube, Piotr Hadaczek, Lluis Samaranch, Adrian P Kells, Waldy San Sebastian, Yuying Zhai, John Bringas, Ting Xu, John Forsayeth, Krystof S Bankiewicz, Ernesto A Salegio, Hillary Streeter, Nikhil Dube, Piotr Hadaczek, Lluis Samaranch, Adrian P Kells, Waldy San Sebastian, Yuying Zhai, John Bringas, Ting Xu, John Forsayeth, Krystof S Bankiewicz

Abstract

When nanoparticles/proteins are infused into the brain, they are often transported to distal sites in a manner that is dependent both on the characteristics of the infusate and the region targeted. We have previously shown that adeno-associated virus (AAV) is disseminated within the brain by perivascular flow and also by axonal transport. Perivascular distribution usually does not depend strongly on the nature of the infusate. Many proteins, neutral liposomes and AAV particles distribute equally well by this route when infused under pressure into various parenchymal locations. In contrast, axonal transport requires receptor-mediated uptake of AAV by neurons and engagement with specific transport mechanisms previously demonstrated for other neurotropic viruses. Cerebrospinal fluid (CSF) represents yet another way in which brain anatomy may be exploited to distribute nanoparticles broadly in the central nervous system. In this study, we assessed the distribution and perivascular transport of nanoparticles of different sizes delivered into the parenchyma of rodents and CSF in non-human primates.

Keywords: AAV; CSF; gene delivery; liposomes; perivascular; thalamo-cortico.

Figures

FIGURE 1
FIGURE 1
Transgene distribution after AAV2 and AAV6 delivery. (A–F) Unilateral injection into the thalamus of adult rats of either AAV2 or AAV6 resulted in widespread expression of GFP transgene in the neocortex and in pre-frontal regions distal to the site of injection. Scale bars: A,D = 5 mm; B,C,E,F = 1 mm.
FIGURE 2
FIGURE 2
Early parenchymal distribution of fluorescently labeled liposomes. (A–E) Acute survival time-point for liposome-infused animals revealed the rapid spread of fluorescently labeled liposomes 30 min after delivery into the thalamus. Spread of fluorescence reached approximately 2.4 mm rostral and 1.6 mm caudal from the site of infusion, suggesting efficient movement of these particles throughout the brain after CED. Scale bar: B–D = 5 mm.
FIGURE 3
FIGURE 3
Perivascular transport of liposomes. (A–F) Examination of parenchymal tissue 2 mm rostral from the site of infusion showing the presence of fluorescently labeled liposomes surrounding the lumen of blood vessels, indicating effective transport of these particles along perivascular spaces. Scale bars: A,E = 5 mm; C,D = 500 μm; B,F = 1 mm.
FIGURE 4
FIGURE 4
Expansion of perivascular spaces after CED. PBS-infused tissue was processed for EM and revealed the expansion of perivascular spaces after CED. These spaces ranged in size from 11 μm (width) × 3 μm (height; black arrows; A) and 2.0 μm (w) × 11.5 μm (h; B), as compared to non-infused, naïve control tissue (C). BV = blood vessel lumen. Scale bar: 1 μm.
FIGURE 5
FIGURE 5
Perivascular transport and pattern of transgene expression. (A–F) Immunostaining against GFP and blood vessels (CD31; endothelial marker) revealed the presence of GFP-positive cells surrounding blood vessels. Transgene expression was frequently observed to form rosette-like patterns in white matter, as demonstrated in cross-sectional views of blood vessels (B,C,E,F), indicative of perivascular transport of AAV particles irrespective of the serotype. Scale bars: A,B,D,E = 500 μm; C,F = 250 μm.
FIGURE 6
FIGURE 6
Early distribution of micelles. (A–D) Cisternal injection of fluorescently labeled micelles (shown in green) indicate the rapid transport of these particles within different regions of the NHP brain. These micelles filled the perivascular space of blood vessels throughout the brain, particularly in the brainstem (BS), cerebellum (CB), ventral tegmental area (VTA), and amygdala (AM). Note that these micelles are shown in green (white arrows) and presence of autofluorescent lipofuscin is shown in red. Scale bars: A,D = 500 μm; B,C = 250 μm.

References

    1. Balin B. J., Gerard H. C., Arking E. J., Appelt D. M., Branigan P. J., Abrams J. T., et al. (1998). Identification and localization of chlamydia pneumoniae in the Alzheimer’s brain. Med. Microbiol. Immunol. 187 23–4210.1007/s004300050071
    1. Balin B. J., Little C. S., Hammond C. J., Appelt D. M., Whittum-Hudson J. A., Gerard H. C., et al. (2008). Chlamydophila pneumoniae and the etiology of late-onset Alzheimer’s disease. J. Alzheimers Dis. 13 371–380
    1. Bankiewicz K. S., Eberling J. L., Kohutnicka M., Jagust W., Pivirotto P., Bringas J., et al. (2000). Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp. Neurol. 164 2–1410.1006/exnr.2000.7408
    1. Braak H., Braak E. (2000). Pathoanatomy of Parkinson’s disease. J. Neurol. 247(Suppl. 2) II3–II1010.1007/PL00007758
    1. Braak H., Rub U., Gai W. P, Del Tredici K. (2003). Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 110 517–536 10.1007/s00702-002-0808-2
    1. Ciesielska A., Hadaczek P., Mittermeyer G., Zhou S., Wright J. F., Bankiewicz K. S., et al. (2013). Cerebral infusion of AAV9 vector-encoding non-self proteins can elicit cell-mediated immune responses. Mol. Ther. 21 158–166 10.1038/mt.2012.167
    1. Ciesielska A., Mittermeyer G., Hadaczek P., Kells A. P., Forsayeth J., Bankiewicz K. S., et al. (2011). Anterograde axonal transport of AAV2-GDNF in rat basal ganglia. Mol. Ther. 19 922–927 10.1038/mt.2010.248
    1. Diefenbach R. J., Miranda-Saksena M., Douglas M. W., Cunningham A. L. (2008). Transport and egress of herpes simplex virus in neurons. Rev. Med. Virol. 18 35–51 10.1002/rmv.560
    1. Dong H., Shu J. Y., Dube N., Ma Y., Tirrell M. V., Downing K. H., et al. (2012). 3-Helix micelles stabilized by polymer springs. J. Am. Chem. Soc. 134 11807–11814 10.1021/ja3048128
    1. Federici T., Taub J. S., Baum G. R., Gray S. J., Grieger J. C., Matthews K. A., et al. (2012). Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Ther. 19 852–859 10.1038/gt.2011.130
    1. Gao G., Vandenberghe L. H., Alvira M. R., Lu Y., Calcedo R., Zhou X., et al. (2004). Clades of Adeno-associated viruses are widely disseminated in human tissues. J. Virol. 78 6381–6388 10.1128/JVI.78.12.6381-6388.2004
    1. Hadaczek P., Yamashita Y., Mirek H., Tamas L., Bohn M. C., Noble C., et al. (2006). The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol. Ther. 14 69–78 10.1016/j.ymthe.2006.02.018
    1. Kells A. P., Forsayeth J., Bankiewicz K. S. (2012). Glial-derived neurotrophic factor gene transfer for Parkinson’s disease: anterograde distribution of AAV2 vectors in the primate brain. Neurobiol. Dis. 48 228–235 10.1016/j.nbd.2011.10.004
    1. Kells A. P., Hadaczek P., Yin D., Bringas J., Varenika V., Forsayeth J., et al. (2009). Efficient gene therapy-based method for the delivery of therapeutics to primate cortex. Proc. Natl. Acad. Sci. U.S.A. 106 2407–2411 10.1073/pnas.0810682106
    1. Krauze M. T., Forsayeth J., Park J. W., Bankiewicz K. S. (2006). Real-time imaging and quantification of brain delivery of liposomes. Pharm. Res. 23 2493–250410.1007/s11095-006-9103-5
    1. Krauze M. T., Forsayeth J., Yin D., Bankiewicz K. S. (2009). Convection-enhanced delivery of liposomes to primate brain. Methods Enzymol. 465 349–3262 10.1016/S0076-6879(09)65018-7
    1. Krauze M. T., McKnight T. R., Yamashita Y., Bringas J., Noble C. O., Saito R., et al. (2005a). Real-time visualization and characterization of liposomal delivery into the monkey brain by magnetic resonance imaging. Brain Res. Brain Res. Protoc. 16 20–2610.1016/j.brainresprot.2005.08.003
    1. Krauze M. T., Saito R., Noble C., Bringas J., Forsayeth J., McKnight T. R., et al. (2005b). Effects of the perivascular space on convection-enhanced delivery of liposomes in primate putamen. Exp. Neurol. 196 104–11110.1016/j.expneurol.2005.07.009
    1. Krauze M. T., Saito R., Noble C., Tamas M., Bringas J., Park J. W., et al. (2005c). Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. J. Neurosurg. 103 923–92910.3171/jns.2005.103.5.0923
    1. Kuo H., Ingram D. K., Crystal R. G., Mastrangeli A. (1995). Retrograde transfer of replication deficient recombinant adenovirus vector in the central nervous system for tracing studies. Brain Res. 705 31–3810.1016/0006-8993(95)01065-3
    1. Matsushita T., Elliger S., Elliger C., Podsakoff G., Villarreal L., Kurtzman G. J., et al. (1998). Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther. 5 938–94510.1038/sj.gt.3300680
    1. Nedergaard M. (2013). Neuroscience. Garbage truck of the brain. Science 340 1529–1530 10.1126/science.1240514
    1. Nonnenmacher M., Weber T. (2012). Intracellular transport of recombinant adeno-associated virus vectors. Gene Ther. 19 649–658 10.1038/gt.2012.6
    1. Paxinos G., Watson C. (1998). The Rat Brain, 4th Edn. San Diego, CA: Academic Press. 1–474p
    1. Salegio E. A., Samaranch L., Kells A. P., Mittermeyer G., San Sebastian W., Zhou S., et al. (2013). Axonal transport of adeno-associated viral vectors is serotype-dependent. Gene Ther. 20 348–352 10.1038/gt.2012.27
    1. Samaranch L., Salegio E. A., San Sebastian W., Kells A. P., Bringas J. R., Forsayeth J., et al. (2013). Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum. Gene Ther. 24 526–532 10.1089/hum.2013.005
    1. San Sebastian W., Samaranch L., Heller G., Kells A. P., Bringas J., Pivirotto P., et al. (2013). Adeno-associated virus type 6 is retrogradely transported in the non-human primate brain. Gene Ther. 20 1178–1183 10.1038/gt.2013.48
    1. Snyder B. R., Gray S. J., Quach E. T., Huang J. W., Leung C. H., Samulski R. J., et al. (2011). Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery. Hum. Gene Ther. 22 1129–1135 10.1089/hum.2011.008
    1. Varenika V., Kells A. P., Valles F., Hadaczek P., Forsayeth J., Bankiewicz K. S., et al. (2009). Controlled dissemination of AAV vectors in the primate brain. Prog. Brain Res. 175 163–172 10.1016/S0079-6123(09)17511-8
    1. Yin D., Forsayeth J., Bankiewicz K. S. (2010a). Optimized cannula design and placement for convection-enhanced delivery in rat striatum. J. Neurosci. Methods 187 46–51 10.1016/j.jneumeth.2009.12.008
    1. Yin D., Richardson R. M., Fiandaca M. S., Bringas J., Forsayeth J., Berger M. S., et al. (2010b). Cannula placement for effective convection-enhanced delivery in the non-human primate thalamus and brainstem: implications for clinical delivery of therapeutics. J. Neurosurg. 113 240–24810.3171/2010.2.JNS091744
    1. Yin D., Valles F. E., Fiandaca M. S., Bringas J., Gimenez F., Berger M. S., et al. (2009). Optimal region of the putamen for image-guided convection-enhanced delivery of therapeutics in human and non-human primates. Neuroimage 187 46–51 10.1016/j.neuroimage.2009.08.069

Source: PubMed

3
Suscribir