Evaluation of Novel Fetal Hemoglobin Inducer Drugs in Treatment of β-Hemoglobinopathy Disorders

Ali Dehghani Fard, Seyed Ahmad Hosseini, Mohammad Shahjahani, Fatemeh Salari, Kaveh Jaseb, Ali Dehghani Fard, Seyed Ahmad Hosseini, Mohammad Shahjahani, Fatemeh Salari, Kaveh Jaseb

Abstract

Objective: The use of fetal hemoglobin (HbF) inducer drugs is considered as a novel approach in treatment of β-hemoglobinopathies, especially β- thalassemia and sickle cell disease. HbF inducers including hydroxyurea, histone deacetylase (HDAC) inhibitor agents such as sodium butyrate, azacitidine, decitabine and new immunomodulator drugs like pomalidomide, lenalidomide and thalidomide can reduce α-globin chain production in erythroid progenitors and improve α: β chain imbalance, the most crucial complication of β-thalassemia.

Materials and methods: In this article, we reviewed more than 40 articles published from 1979 to 2012 in the field of fetal hemoglobin augmentation.

Results: Recent studies suggest the synergistic effect of drug combinations in efficient induction of fetal hemoglobin and gene over-expression.

Conclusion: It seems that drugs which act with different molecular and epigenetic mechanisms have proper synergistic effects in fetal hemoglobin induction and gene over-expression.

Keywords: Fetal hemoglobin; Histone deacetylase; β-Hemoglobinopathies.

Figures

Figure 1
Figure 1
Drugs and their induction mechanism of γ-globin gene. For details refer to text Abbreviation: EPO, erythropoietin; HU, hydroxyurea; SCF, stem cell factor; NO, nitric oxide; ROS, reactive oxygen species; P38 MAPK, p38 mitogen activation protein kinase; CH3, methyl group; HAT, histone acetyl transferase; HDAC, histone deacetylase; DNMT, DNA methyl transferase; AC, acetyl group; SAHA, suberoylanilide hydroxaminc acid.

References

    1. Flint J, Harding RM, Boyce AJ, Clegg JB. 1 The population genetics of the haemoglobinopathies. Baillière's clinical haematology. 1998;11(1):1–51.
    1. Atweh GF, DeSimone J, Saunthararajah Y, Fathallah H, Weinberg RS, Nagel RL. Hemoglobinopathies. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2003:14–39. PubMed PMID: 14633775.
    1. Giardine B, van Baal S, Kaimakis P, Riemer C, Miller W, Samara M, et al. HbVar database of human hemoglobin variants and thalassemia mutations: 2007 update. Human Mutation. 2007;28(2):206.
    1. Hardison RC, Chui DH, Riemer CR, Miller W, Carver MF, Molchanova TP, et al. Access to a syllabus of human hemoglobin variants (1996) via the World Wide Web. Hemoglobin. 1998 Mar;22(2):113–27. PubMed PMID: 9576329.
    1. Karimi M, Yarmohammadi H, Farjadian S, Zeinali S, Moghaddam Z, Cappellini MD, et al. β-Thalassemia intermedia from southern Iran: IVS-II-1 (G→ A) is the prevalent thalassemia intermedia allele. Hemoglobin. 2002;26(2):147–54.
    1. Steinberg MH, Rodgers GP. Pharmacologic modulation of fetal hemoglobin. Medicine. 2001;80(5):328–44.
    1. Perrine SP. Fetal globin stimulant therapies in the beta-hemoglobinopathies: principles and current potential. Pediatric annals. 2008;37(5):339.
    1. Gallo E, Massaro P, Miniero R, David D, Tarella C. The importance of the genetic picture and globin synthesis in determining the clinical and haematological features of thalassaemia intermedia. British journal of haematology. 1979;41(2):211–21.
    1. Schrier SL. Pathobiology of thalassemic erythrocytes. Current opinion in hematology. 1997 Mar;4(2):75–8. PubMed PMID: 9107522.
    1. Stamatoyannopoulos G. Control of globin gene expression during development and erythroid differentiation. Experimental hematology. 2005;33(3):259–71.
    1. Centis F, Tabellini L, Lucarelli G, Buffi O, Tonucci P, Persini B, et al. The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β-thalassemia major. Blood. 2000;96(10):3624–9.
    1. Mathias LA, Fisher TC, Zeng L, Meiselman HJ, Weinberg KI, Hiti AL, et al. Ineffective erythropoiesis in beta-thalassemia major is due to apoptosis at the polychromatophilic normoblast stage. Experimental hematology. 2000 Dec;28(12):1343–53. PubMed PMID: 11146156.
    1. Pootrakul P, Sirankapracha P, Hemsorach S, Moungsub W, Kumbunlue R, Piangitjagum A, et al. A correlation of erythrokinetics, ineffective erythropoiesis, and erythroid precursor apoptosis in thai patients with thalassemia. Blood. 2000 Oct 1;96(7):2606–12. PubMed PMID: 11001918.
    1. Ataga KI. Novel therapies in sickle cell disease. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2009:54–61. PubMed PMID: 20008182.
    1. Wayengera M. Zinc finger nucleases for targeted mutagenesis and repair of the sickle-cell disease mutation: An in-silico study. BMC blood disorders. 2012;12:5. PubMed PMID: 22583379. Pubmed Central PMCID: 3407482.
    1. Galanello R, Origa R. Beta-thalassemia. Orphanet journal of rare diseases. 2010;5:11. PubMed PMID: 20492708. Pubmed Central PMCID: 2893117.
    1. Trompeter S, Roberts I. Haemoglobin F modulation in childhood sickle cell disease. Br J Haematol. 2009 Feb;144(3):308–16. PubMed PMID: 19036119.
    1. Kiefer CM, Hou C, Little JA, Dean A. Epigenetics of beta-globin gene regulation. Mutation research. 2008 Dec 1;647(1-2):68–76. PubMed PMID: 18760288. Pubmed Central PMCID: 2617773.
    1. Burkitt MJ, Raafat A. Nitric oxide generation from hydroxyurea: significance and implications for leukemogenesis in the management of myeloproliferative disorders. Blood. 2006 Mar 15;107(6):2219–22. PubMed PMID: 16282342.
    1. Ma Q, Wyszynski D, Farrell J, Kutlar A, Farrer L, Baldwin C, et al. Fetal hemoglobin in sickle cell anemia: genetic determinants of response to hydroxyurea. The pharmacogenomics journal. 2007;7(6):386–94.
    1. Liu K, Xing H, Zhang S. Cucurbitacin D induces fetal hemoglobin synthesis in K562 cells and human hematopoietic progenitors through activation of p38 pathway and stabilization of the γ-globin mRNA. Blood Cells, Molecules, and Diseases. 2010;45(4):269–75.
    1. DeSimone J, Heller P, Hall L, Zwiers D. 5-Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proceedings of the National Academy of Sciences. 1982;79(14):4428–31.
    1. Mabaera R, Lowrey CH. Response: 5-azacytidine induction of human fetal hemoglobin. Blood. 2008;111(4):2486.
    1. Saunthararajah Y, Hillery CA, Lavelle D, Molokie R, Dorn L, Bressler L, et al. Effects of 5-aza-2’-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood. 2003 Dec 1;102(12):3865–70. PubMed PMID: 12907443.
    1. Ley TJ, DeSimone J, Anagnou NP, Keller GH, Humphries RK, Turner PH, et al. 5-azacytidine selectively increases gamma-globin synthesis in a patient with beta+ thalassemia. The New England journal of medicine. 1982 Dec 9;307(24):1469–75. PubMed PMID: 6183586.
    1. Fathallah H, Atweh GF. Induction of fetal hemoglobin in the treatment of sickle cell disease. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2006:58–62. PubMed PMID: 17124041.
    1. Fard A, Kaviani S, Noruzinia M, Saki N. Epigenetic modulations on the fetal hemoglobin induction. International Journal of Hematology-Oncology and Stem Cell Research. 2012;6(1)
    1. Perrine SP, Ginder GD, Faller DV, Dover GH, Ikuta T, Witkowska HE, et al. A short-term trial of butyrate to stimulate fetal-globin-gene expression in the beta-globin disorders. The New England journal of medicine. 1993 Jan 14;328(2):81–6. PubMed PMID: 7677966.
    1. Hagh MF, Fard AD, Saki N, Shahjahani M, Kaviani S. Molecular Mechanisms of hemoglobin F induction. International Journal of Hematology-Oncology and Stem Cell Research. 2011;5(4)
    1. Marianna P, Kollia P, Akel S, Papassotiriou Y, Stamoulakatou A, Loukopoulos D. Valproic acid, trichostatin and their combination with hemin preferentially enhance gamma-globin gene expression in human erythroid liquid cultures. Haematologica. 2001 Jul;86(7):700–5. PubMed PMID: 11454524.
    1. Ida C, Ogata S, Okumura K, Taguchi H. Induction of differentiation in k562 cell line by nicotinic acid-related compounds. Bioscience, biotechnology, and biochemistry. 2009 Jan;73(1):79–84. PubMed PMID: 19129652.
    1. Sekeres MA, List A. Lenalidomide (Revlimid, CC-5013) in myelodysplastic syndromes: Is it any good? Current hematologic malignancy reports. 2006 Mar;1(1):16–9. PubMed PMID: 20425326.
    1. Moutouh-de Parseval LA, Verhelle D, Glezer E, Jensen-Pergakes K, Ferguson GD, Corral LG, et al. Pomalidomide and lenalidomide regulate erythropoiesis and fetal hemoglobin production in human CD34+ cells. The Journal of clinical investigation. 2008 Jan;118(1):248–58. PubMed PMID: 18064299. Pubmed Central PMCID: 2117764.
    1. Dehghanifard A, Kaviani S, Noruzinia M, Soleimani M, Abroun S, Zonoubi Z. Evaluation the effect of thalidomide and sodium butyrate on cord blood stem cell differentiation induction to erythroid lineage; Genetics in the 3rd Millennium; 2011.
    1. Aerbajinai W, Zhu J, Gao Z, Chin K, Rodgers GP. Thalidomide induces gamma-globin gene expression through increased reactive oxygen species-mediated p38 MAPK signaling and histone H4 acetylation in adult erythropoiesis. Blood. 2007 Oct 15;110(8):2864–71. PubMed PMID: 17620452. Pubmed Central PMCID: 2018668.
    1. Stephens TD, Fillmore BJ. Hypothesis: thalidomide embryopathy-proposed mechanism of action. Teratology. 2000 Mar;61(3):189–95. PubMed PMID: 10661908.
    1. Eriksson T, Bjorkman S, Hoglund P. Clinical pharmacology of thalidomide. European journal of clinical pharmacology. 2001 Aug;57(5):365–76. PubMed PMID: 11599654.
    1. Fard AD, Kaviani S, Saki N, Mortaz E. The emerging role of immunomodulatory agents in fetal hemoglobin induction. International Journal of Hematology-Oncology and Stem Cell Research. 2012;6(4):35–6.
    1. Masera N, Tavecchia L, Capra M, Cazzaniga G, Vimercati C, Pozzi L, et al. Optimal response to thalidomide in a patient with thalassaemia major resistant to conventional therapy. Blood transfusion = Trasfusione del sangue. 2010 Jan;8(1):63–5. PubMed PMID: 20104280. Pubmed Central PMCID: 2809513.
    1. Ahmadvand M, Norouznia M, Soleimani M, Kaviani, Abroun S, Dehghanifard A. Invitro induction of the gama glubin gene in erithroid cells derived from CD133+ by thalidomid and sodium butyrate; Genetic in the 3RD Millennium; 2011.
    1. Dehghanifard A, Kaviani S, Noruzinia M, Soleimani M, Abroun S, Hajifathali A, et al. Synergistic Effect of Sodium Butyrate and Thalidomide in the Induction of Fetal Hemoglobin Expression in Erythroid Progenitors Derived from Cord Blood CD133+ Cells. Zahedan Journal of Research in Medical Sciences. 2012;14(7):29–33.
    1. Fard AD, Kaviani S, Noruzinia M, Soleimani M, Abroun S, Chegeni R, et al. Evaluation of H3 Histone Methylation and Colony Formation in Erythroid Progenitors Treated with Thalidomide and Sodium Butyrate. Laboratory Hematology. 2013;19(1):1–5.
    1. Fard AD, Kaviani S, Noruzinia M, Soleimani M, Abroun S, Hajifathali A. Changing the pattern of histone H3 methylation following treatment of erythroid progenitors derived from cord blood CD133+ cells with sodium butyrate and thalidomide;
    1. Koshy M, Dorn L, Bressler L, Molokie R, Lavelle D, Talischy N, et al. 2-deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood. 2000;96(7):2379–84.
    1. Atashi A, Soleimani M, Kaviani S, Hajifathali A, Arefian E. In vitro induction of fetal hemoglobin in erythroid cells derived from CD133+ cells by transforming growth factor-and stem cell factor. Iranian Journal of Biotechnology (IJB) 2008;6(3)
    1. Sangerman J, Lee MS, Yao X, Oteng E, Hsiao C-H, Li W, et al. Mechanism for fetal hemoglobin induction by histone deacetylase inhibitors involves γ-globin activation by CREB1 and ATF-2. Blood. 2006;108(10):3590–9.
    1. Cao H, Stamatoyannopoulos G, Jung M. Induction of human γ globin gene expression by histone deacetylase inhibitors. Blood. 2004;103(2):701–9.
    1. Witt O, Mönkemeyer S, Kanbach K, Pekrun A. Induction of fetal hemoglobin synthesis by valproate: modulation of MAPkinase pathways. American journal of hematology. 2002;71(1):45–6.
    1. Chu BF, Karpenko MJ, Liu Z, Aimiuwu J, Villalona-Calero MA, Chan KK, et al. Phase I study of 5-aza-2’-deoxycytidine in combination with valproic acid in non-small-cell lung cancer. Cancer chemotherapy and pharmacology. 2013 Jan;71(1):115–21. PubMed PMID: 23053268.
    1. Perrine SP, Wargin WA, Boosalis MS, Wallis WJ, Case S, Keefer JR, et al. Evaluation of Safety and Pharmacokinetics of Sodium 2, 2 Dimethylbutyrate, a Novel Short Chain Fatty Acid Derivative, in a Phase 1, Double-Blind, Placebo-Controlled, Single-Dose, and Repeat-Dose Studies in Healthy Volunteers. The Journal of Clinical Pharmacology. 2011;51(8):1186–94.
    1. Zein S, Li W, Ramakrishnan V, Lou T-F, Sivanand S, Mackie A, et al. Identification of fetal hemoglobin-inducing agents using the human leukemia KU812 cell line. Experimental Biology and Medicine. 2010;235(11):1385–94.
    1. Munugalavadla V, Kapur R. Role of c-Kit and erythropoietin receptor in erythropoiesis. Critical reviews in oncology/hematology. 2005;54(1):63.
    1. Li H, Ko CH, Tsang SY, Leung PC, Fung MC, Fung KP. The ethanol extract of Fructus trichosanthis promotes fetal hemoglobin production via p38 MAPK activation and ERK inactivation in K562 cells. Evidence-Based Complementary and Alternative Medicine. 2011;2011
    1. Hebbel RP, Vercellotti GM, Pace BS, Solovey AN, Kollander R, Abanonu CF, et al. The HDAC inhibitors trichostatin A and suberoylanilide hydroxamic acid exhibit multiple modalities of benefit for the vascular pathobiology of sickle transgenic mice. Blood. 2010 Mar 25;115(12):2483–90. PubMed PMID: 20053759. Pubmed Central PMCID: 2845902.
    1. Constantoulakis P, Papayannopoulou T, Stamatoyannopoulos G. alpha-Amino-N-butyric acid stimulates fetal hemoglobin in the adult. Blood. 1988;72(6):1961–7.
    1. Fibach E, Prasanna P, Rodgers G, Samid D. Enhanced fetal hemoglobin production by phenylacetate and 4-phenylbutyrate in erythroid precursors derived from normal donors and patients with sickle cell anemia and beta-thalassemia. Blood. 1993;82(7):2203–9.
    1. Olivieri NF, Saunthararajah Y, Thayalasuthan V, Kwiatkowski J, Ware RE, Kuypers FA, et al. A pilot study of subcutaneous decitabine in β-thalassemia intermedia. Blood. 2011;118(10):2708–11.
    1. Saunthararajah Y, Molokie R, Saraf S, Sidhwani S, Gowhari M, Vara S, et al. Clinical effectiveness of decitabine in severe sickle cell disease. British journal of haematology. 2008;141(1):126–9.
    1. Lowrey CH, Nienhuis AW. Treatment with azacitidine of patients with end-stage β-thalassemia. New England Journal of Medicine. 1993;329(12):845–8.
    1. Steinberg MH, Lu Z-H, Barton FB, Terrin ML, Charache S, Dover GJ. Fetal hemoglobin in sickle cell anemia: determinants of response to hydroxyurea. Blood. 1997;89(3):1078–88.
    1. Fucharoen S, Siritanaratkul N, Winichagoon P, Chowthaworn J, Siriboon W, Muangsup W, et al. Hydroxyurea increases hemoglobin F levels and improves the effectiveness of erythropoiesis in beta-thalassemia/hemoglobin E disease. Blood. 1996 Feb 1;87(3):887–92. PubMed PMID: 8562958.
    1. Hajjar FM, Pearson HA. Pharmacologic treatment of thalassemia intermedia with hydroxyurea. The Journal of pediatrics. 1994;125(3):490–2.
    1. Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proceedings of the National Academy of Sciences. 2008;105(5):1620–5.
    1. Perrine S. Novel therapeutic agents for HbF induction: a new era for treatment of β thalassemia? Thalassemia Reports. 2011;1(1):e7.
    1. Fu Y-F, Du T-T, Dong M, Zhu K-Y, Jing C-B, Zhang Y, et al. Mir-144 selectively regulates embryonic α-hemoglobin synthesis during primitive erythropoiesis. Blood. 2009;113(6):1340–9.

Source: PubMed

3
Suscribir