Moderate Increase in Protein Intake Promotes a Small Additional Improvement in Functional Capacity, But Not in Muscle Strength and Lean Mass Quality, in Postmenopausal Women Following Resistance Exercise: A Randomized Clinical Trial

Paula C Nahas, Luana T Rossato, Fernanda M Martins, Aletéia P Souza, Flávia M S de Branco, Marcelo A S Carneiro, Kely R C Teixeira, Fábio L Orsatti, Erick P de Oliveira, Paula C Nahas, Luana T Rossato, Fernanda M Martins, Aletéia P Souza, Flávia M S de Branco, Marcelo A S Carneiro, Kely R C Teixeira, Fábio L Orsatti, Erick P de Oliveira

Abstract

The aim of this study was to evaluate the effect of a moderate increase in protein intake on muscle strength, functional capacity and lean mass quality improvements in postmenopausal women following resistance exercise. Forty-seven postmenopausal women were randomized in two groups: Normal protein (NP, n = 25), who received a dietary plan containing ~0.8 g protein·kg-1·d-1 (recommended dietary allowance-RDA recommendations); and higher protein (HP, n = 22), which a moderate increase in protein intake was recommended (~1.2 g protein·kg-1·d-1). Resistance training was performed for 10 weeks, three times/week. Muscle strength (handgrip strength and one repetition maximum test-1-RM), functional capacity and lean mass (LM) quality (muscle strength to lean mass ratio) were evaluated. Dietary intake was assessed by nine 24 h food recalls. After intervention, both groups increased similarly the leg extension 1-RM and handgrip strength. Regarding functional capacity tests, both groups increased the balance test score (SPPB) and 10 m walk test speed, with no differences between the groups. In addition, an increase in speed to perform the 6 min and 400 m walk tests was observed over the time, with an additional improvement in the HP group (time × group interaction; p = 0.007 and p = 0.004, respectively). About LM quality, leg extension 1-RM/leg LM improved over the time in both groups (p = 0.050), with no time × group interaction. All these significant changes had a low effect size. In conclusion, a moderate increase in protein intake promoted a small additional improvement in functional capacity, but it did not induce a greater increase in strength and LM quality after 10 weeks of resistance exercise in postmenopausal women. This trial was registered at ClinicalTrials.gov as NCT03024125.

Keywords: dietary intervention; muscle function; muscle mass quality; muscle strength.

Conflict of interest statement

The authors declare no conflict of interests.

Figures

Figure 1
Figure 1
Flowchart of the individuals in the study.
Figure 2
Figure 2
Schematic overview of the study design. Notes: FP, familiarization period; 1-RM, one maximum repetition test; HGS, handgrip strength; LM, lean mass; REE, Resting Energy Expenditure.

References

    1. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyere O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169.
    1. Moore D.R., Churchward-Venne T.A., Witard O., Breen L., Burd N.A., Tipton K.D., Phillips S.M. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J. Gerontol. A Biol. Sci. Med. Sci. 2015;70:57–62. doi: 10.1093/gerona/glu103.
    1. Breen L., Phillips S.M. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the ‘anabolic resistance’ of ageing. Nutr. Metab. 2011;8:68. doi: 10.1186/1743-7075-8-68.
    1. Gianoudis J., Bailey C.A., Daly R.M. Associations between sedentary behaviour and body composition, muscle function and sarcopenia in community-dwelling older adults. Osteoporos. Int. 2015;26:571–579. doi: 10.1007/s00198-014-2895-y.
    1. Nair K. S Aging muscle. Am. J. Clin. Nutr. 2005;81:953–963. doi: 10.1093/ajcn/81.5.953.
    1. Burger H.G., Hale G.E., Robertson D.M., Dennerstein L. A review of hormonal changes during the menopausal transition: Focus on findings from the Melbourne Women’s Midlife Health Project. Hum. Reprod. Update. 2007;13:559–565. doi: 10.1093/humupd/dmm020.
    1. Messier V., Rabasa-Lhoret R., Barbat-Artigas S., Elisha B., Karelis A.D., Aubertin-Leheudre M. Menopause and sarcopenia: A potential role for sex hormones. Maturitas. 2011;68:331–336. doi: 10.1016/j.maturitas.2011.01.014.
    1. Landi F., Cruz-Jentoft A.J., Liperoti R., Russo A., Giovannini S., Tosato M., Capoluongo E., Bernabei R., Onder G. Sarcopenia and mortality risk in frail older persons aged 80 years and older: Results from ilSIRENTE study. Age Ageing. 2013;42:203–209. doi: 10.1093/ageing/afs194.
    1. Cruz-Jentoft A.J., Landi F., Schneider S.M., Zuniga C., Arai H., Boirie Y., Chen L.K., Fielding R.A., Martin F.C., Michel J.P., et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS) Age Ageing. 2014;43:748–759. doi: 10.1093/ageing/afu115.
    1. Bokshan S.L., DePasse J.M., Daniels A.H. Sarcopenia in Orthopedic Surgery. Orthopedics. 2016;39:295–300. doi: 10.3928/01477447-20160222-02.
    1. Newman A.B., Haggerty C.L., Goodpaster B., Harris T., Kritchevsky S., Nevitt M., Miles T.P., Visser M. Strength and muscle quality in a well-functioning cohort of older adults: The Health, Aging and Body Composition Study. J. Am. Geriatr. Soc. 2003;51:323–330. doi: 10.1046/j.1532-5415.2003.51105.x.
    1. Lauretani F., Russo C.R., Bandinelli S., Bartali B., Cavazzini C., Iorio A.D., Corsi A.M., Rantanen T., Guralnik J.M., Ferrucci L. Age-associated changes in skeletal muscles and their effect on mobility: An operational diagnosis of sarcopenia. J. Appl. Physiol. 2003;95:1851–1860. doi: 10.1152/japplphysiol.00246.2003.
    1. Visser M., Kritchevsky S.B., Goodpaster B.H., Newman A.B., Nevitt M., Stamm E., Harris T.B. Leg Muscle Mass and Composition in Relation to Lower Extremity Performance in Men and Women Aged 70 to 79: The Health, Aging and Body Composition Study. J. Am. Geriatr. Soc. 2002;50:897–904. doi: 10.1046/j.1532-5415.2002.50217.x.
    1. Ward-Ritacco C.L., Adrian A.L., Johnson M.A., Rogers L.Q., Evans E.M. Adiposity, physical activity, and muscle quality are independently related to physical function performance in middle-aged postmenopausal women. Menopause. 2014;21:1114–1121. doi: 10.1097/GME.0000000000000225.
    1. Garber C.E., Blissmer B., Deschenes M.R., Franklin B.A., Lamonte M.J., Lee I.M., Nieman D.C., Swain D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011;43:1334–1359. doi: 10.1249/MSS.0b013e318213fefb.
    1. Leenders M., Verdijk L.B., van der Hoeven L., van Kranenburg J., Nilwik R., van Loon L.J. Elderly men and women benefit equally from prolonged resistance-type exercise training. J. Gerontol A Biol. Sci. Med. Sci. 2013;68:769–779. doi: 10.1093/gerona/gls241.
    1. Nunes P.R., Barcelos L.C., Oliveira A.A., Furlanetto Junior R., Martins F.M., Orsatti C.L., Resende E.A., Orsatti F.L. Effect of resistance training on muscular strength and indicators of abdominal adiposity, metabolic risk, and inflammation in postmenopausal women: Controlled and randomized clinical trial of efficacy of training volume. Age (Dordr) 2016;38:40. doi: 10.1007/s11357-016-9901-6.
    1. De Branco F.M.S., Carneiro M.A.S., Rossato L.T., Nahas P.C., Teixeira K.R.C., de Oliveira G.N., Orsatti F.L., Jr., de Oliveira E.P. Protein timing has no effect on lean mass, strength and functional capacity gains induced by resistance exercise in postmenopausal women: A randomized clinical trial. Clin. Nutr. 2019 doi: 10.1016/j.clnu.2019.01.008.
    1. Breen L., Phillips S.M. Nutrient interaction for optimal protein anabolism in resistance exercise. Curr. Opin. Clin. Nutr. Metab. Care. 2012;15:226–232. doi: 10.1097/MCO.0b013e3283516850.
    1. Morton R.W., Murphy K.T., McKellar S.R., Schoenfeld B.J., Henselmans M., Helms E., Aragon A.A., Devries M.C., Banfield L., Krieger J.W., et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018;52:376–384. doi: 10.1136/bjsports-2017-097608.
    1. Tieland M., Dirks M.L., van der Zwaluw N., Verdijk L.B., van de Rest O., de Groot L.C., van Loon L.J. Protein supplementation increases muscle mass gain during prolonged resistance-type exercise training in frail elderly people: A randomized, double-blind, placebo-controlled trial. J. Am. Med. Dir. Assoc. 2012;13:713–719. doi: 10.1016/j.jamda.2012.05.020.
    1. Finger D., Goltz F.R., Umpierre D., Meyer E., Rosa L.H.T., Schneider C.D. Effects of Protein Supplementation in Older Adults Undergoing Resistance Training: A Systematic Review and Meta-Analysis. Sports Med. 2015;45:245–255. doi: 10.1007/s40279-014-0269-4.
    1. Rossato L.T., Nahas P.C., de Branco F.M.S., Martins F.M., Souza A.P., Carneiro M.A.S., Orsatti F.L., de Oliveira E.P. Higher Protein Intake Does Not Improve Lean Mass Gain When Compared with RDA Recommendation in Postmenopausal Women Following Resistance Exercise Protocol: A Randomized Clinical Trial. Nutrients. 2017;9:1007. doi: 10.3390/nu9091007.
    1. Barbosa C.D., Costa J.G., Giolo J.S., Rossato L.T., Nahas P.C., Mariano I.M., Batista J.P., Puga G.M., de Oliveira E.P. Isoflavone supplementation plus combined aerobic and resistance exercise do not change phase angle values in postmenopausal women: A randomized placebo-controlled clinical trial. Exp. Gerontol. 2019;117:31–37. doi: 10.1016/j.exger.2018.08.007.
    1. Food and Nutrition Board Dietary Reference Intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (Macronutrients) Wash. (DC) Nat. Acad. Press. 2005 doi: 10.17226/10490.
    1. Phillips S.M., Martinson W. Nutrient-rich, high-quality, protein-containing dairy foods in combination with exercise in aging persons to mitigate sarcopenia. Nutr. Rev. 2019;77:216–229. doi: 10.1093/nutrit/nuy062.
    1. Bauer J., Biolo G., Cederholm T., Cesari M., Cruz-Jentoft A.J., Morley J.E., Phillips S., Sieber C., Stehle P., Teta D., et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013;14:542–559. doi: 10.1016/j.jamda.2013.05.021.
    1. Deutz N.E., Bauer J.M., Barazzoni R., Biolo G., Boirie Y., Bosy-Westphal A., Cederholm T., Cruz-Jentoft A., Krznaric Z., Nair K.S., et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014;33:929–936. doi: 10.1016/j.clnu.2014.04.007.
    1. Isanejad M., Mursu J., Sirola J., Kroger H., Rikkonen T., Tuppurainen M., Erkkila A.T. Dietary protein intake is associated with better physical function and muscle strength among elderly women. Br. J. Nutr. 2016;115:1281–1291. doi: 10.1017/S000711451600012X.
    1. Dankel S.J., Buckner S.L., Jessee M.B., Grant Mouser J., Mattocks K.T., Abe T., Loenneke J.P. Correlations Do Not Show Cause and Effect: Not Even for Changes in Muscle Size and Strength. Sports Med. 2017;48:1–6. doi: 10.1007/s40279-017-0774-3.
    1. Loenneke J.P., Dankel S.J., Bell Z.W., Buckner S.L., Mattocks K.T., Jessee M.B., Abe T. Is muscle growth a mechanism for increasing strength? Med. Hypotheses. 2019;125:51–56. doi: 10.1016/j.mehy.2019.02.030.
    1. Lohman T.G., Roche A.F., Martorell R. Anthropometric Standardization Reference Manual. ©1988 ed. Human Kinetics Books; Champaign, IL, USA: 1988.
    1. Guralnik J.M., Simonsick E.M., Ferrucci L., Glynn R.J., Berkman L.F., Blazer D.G., Scherr P.A., Wallace R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994;49:85–94. doi: 10.1093/geronj/49.2.M85.
    1. Steffen T.M., Hacker T.A., Mollinger L. Age- and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. Phys. Ther. 2002;82:128–137.
    1. Shumway-Cook A., Guralnik J.M., Phillips C.L., Coppin A.K., Ciol M.A., Bandinelli S., Ferrucci L. Age-associated declines in complex walking task performance: The Walking InCHIANTI toolkit. J. Am. Geriatr. Soc. 2007;55:58–65. doi: 10.1111/j.1532-5415.2006.00962.x.
    1. Scivoletto G., Tamburella F., Laurenza L., Foti C., Ditunno J.F., Molinari M. Validity and reliability of the 10-m walk test and the 6-min walk test in spinal cord injury patients. Spinal Cord. 2011;49:736–740. doi: 10.1038/sc.2010.180.
    1. Reis B.C.A., de Branco F.M.S., Pessoa D.F., Barbosa C.D., Dos Reis A.S., de Medeiros L.A., de Oliveira E.P. Phase angle is positively associated with handgrip strength in hospitalized individuals. Top. Clin. Nutr. 2018;33:127–133. doi: 10.1097/TIN.0000000000000135.
    1. De Oliveira E.P., Orsatti F.L., Teixeira O., Maesta N., Burini R.C. Comparison of predictive equations for resting energy expenditure in overweight and obese adults. J. Obes. 2011;2011:534714. doi: 10.1155/2011/534714.
    1. Weir J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949;109:1–9. doi: 10.1113/jphysiol.1949.sp004363.
    1. Volek J.S., Forsythe C.E., Kraemer W.J. Nutritional aspects of women strength athletes. Br. J. Sports Med. 2006;40:742–748. doi: 10.1136/bjsm.2004.016709.
    1. USDA . Food Composition Databases. United States Department of Agriculture; Washington, DC, USA: 2007. Release 20 Slightly Revised.
    1. Naderi A., de Oliveira E.P., Ziegenfuss T.N., Willems M.T. Timing, Optimal Dose and Intake Duration of Dietary Supplements with Evidence-Based Use in Sports Nutrition. J. Exerc. Nutr. Biochem. 2016;20:1–12. doi: 10.20463/jenb.2016.0031.
    1. ACSM American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009;41:687–708. doi: 10.1249/MSS.0b013e3181915670.
    1. Stark M., Lukaszuk J., Prawitz A., Salacinski A. Protein timing and its effects on muscular hypertrophy and strength in individuals engaged in weight-training. J. Int. Soc. Sports Nutr. 2012;9:54. doi: 10.1186/1550-2783-9-54.
    1. Mehdy Jeleel S., AbbasAbdul Hussein F. Comparison between of estimators Robust and Classical in repeated measurement experiments analysis. J. Kerbala Univ. 2016;12:201–215.
    1. Fritz C.O., Morris P.E., Richler J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012;141:2–18. doi: 10.1037/a0024338.
    1. Shrout P.E., Fleiss J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979;86:420–428. doi: 10.1037/0033-2909.86.2.420.
    1. Landi F., Calvani R., Tosato M., Martone A.M., Ortolani E., Savera G., Sisto A., Marzetti E. Anorexia of Aging: Risk Factors, Consequences, and Potential Treatments. Nutrients. 2016;8:69. doi: 10.3390/nu8020069.
    1. Phillips S.M., Chevalier S., Leidy H.J. Protein “requirements” beyond the RDA: Implications for optimizing health. Appl. Physiol. Nutr. Metab. 2016;41:565–572. doi: 10.1139/apnm-2015-0550.
    1. Paddon-Jones D., Campbell W.W., Jacques P.F., Kritchevsky S.B., Moore L.L., Rodriguez N.R., van Loon L.J. Protein and healthy aging. Am. J. Clin. Nutr. 2015;101:1339–1345. doi: 10.3945/ajcn.114.084061.
    1. McDonald C.K., Ankarfeldt M.Z., Capra S., Bauer J., Raymond K., Heitmann B.L. Lean body mass change over 6 years is associated with dietary leucine intake in an older Danish population. Br. J. Nutr. 2016;115:1556–1562. doi: 10.1017/S0007114516000611.
    1. Rafii M., Chapman K., Owens J., Elango R., Campbell W.W., Ball R.O., Pencharz P.B., Courtney-Martin G. Dietary protein requirement of female adults >65 years determined by the indicator amino acid oxidation technique is higher than current recommendations. J. Nutr. 2015;145:18–24. doi: 10.3945/jn.114.197517.
    1. Tang M., McCabe G.P., Elango R., Pencharz P.B., Ball R.O., Campbell W.W. Assessment of protein requirement in octogenarian women with use of the indicator amino acid oxidation technique. Am. J. Clin. Nutr. 2014;99:891–898. doi: 10.3945/ajcn.112.042325.
    1. Cermak N.M., Res P.T., de Groot L.C., Saris W.H., van Loon L.J. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: A meta-analysis. Am. J. Clin. Nutr. 2012;96:1454–1464. doi: 10.3945/ajcn.112.037556.
    1. Hughes V.A., Frontera W.R., Wood M., Evans W.J., Dallal G.E., Roubenoff R., Fiatarone Singh M.A. Longitudinal muscle strength changes in older adults: Influence of muscle mass, physical activity, and health. J. Gerontol. A Biol. Sci. Med. Sci. 2001;56:209–217. doi: 10.1093/gerona/56.5.B209.
    1. Rippberger P.L., Emeny R.T., Mackenzie T.A., Bartels S.J., Batsis J.A. The association of sarcopenia, telomere length, and mortality: Data from the NHANES 1999–2002. Eur. J. Clin. Nutr. 2018;12:255–263. doi: 10.1038/s41430-017-0011-z.
    1. Balogun S., Winzenberg T., Wills K., Scott D., Jones G., Aitken D., Callisaya M.L. Prospective Associations of Low Muscle Mass and Function with 10-Year Falls Risk, Incident Fracture and Mortality in Community-Dwelling Older Adults. J. Nutr. Health Aging. 2017;21:843–848. doi: 10.1007/s12603-016-0843-6.
    1. Stessman J., Rottenberg Y., Fischer M., Hammerman-Rozenberg A., Jacobs J.M. Handgrip Strength in Old and Very Old Adults: Mood, Cognition, Function, and Mortality. J. Am. Geriatr. Soc. 2017;65:526–532. doi: 10.1111/jgs.14509.
    1. Platte P., Pirke K.M., Wade S.E., Trimborn P., Fichter M.M. Physical activity, total energy expenditure, and food intake in grossly obese and normal weight women. Int. J. Eat. Disord. 1995;17:51–57. doi: 10.1002/1098-108X(199501)17:1<51::AID-EAT2260170107>;2-Q.
    1. Lafay L., Mennen L., Basdevant A., Charles M.A., Borys J.M., Eschwege E., Romon M. Does energy intake underreporting involve all kinds of food or only specific food items? Results from the Fleurbaix Laventie Ville Sante (FLVS) study. Int. J. Obes. Relat. Metab. Disord. 2000;24:1500–1506. doi: 10.1038/sj.ijo.0801392.
    1. Rossato L.T., Barbosa C.D., Nahas P.C., Orsatti F.L., de Oliveira E.P. Anthropometric and demographic predictors of handgrip strength and lean mass quality in hospitalized individuals. Clin. Nutri. ESPEN. 2018;24:58–61. doi: 10.1016/j.clnesp.2018.01.069.
    1. Lees M.J., Wilson O.J., Hind K., Ispoglou T. Muscle quality as a complementary prognostic tool in conjunction with sarcopenia assessment in younger and older individuals. Eur. J. Appl. Physiol. 2019;119:1171–1181. doi: 10.1007/s00421-019-04107-8.
    1. Poggiogalle E., Lubrano C., Gnessi L., Mariani S., Di Martino M., Catalano C., Lenzi A., Donini L.M. The decline in muscle strength and muscle quality in relation to metabolic derangements in adult women with obesity. Clin. Nutr. 2019 doi: 10.1016/j.clnu.2019.01.028.

Source: PubMed

3
Suscribir