Neurobiological effects of transcranial direct current stimulation: a review

Liciane Fernandes Medeiros, Izabel Cristina Custodio de Souza, Liliane Pinto Vidor, Andressa de Souza, Alícia Deitos, Magdalena Sarah Volz, Felipe Fregni, Wolnei Caumo, Iraci L S Torres, Liciane Fernandes Medeiros, Izabel Cristina Custodio de Souza, Liliane Pinto Vidor, Andressa de Souza, Alícia Deitos, Magdalena Sarah Volz, Felipe Fregni, Wolnei Caumo, Iraci L S Torres

Abstract

Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation technique that is affordable and easy to operate compared to other neuromodulation techniques. Anodal stimulation increases cortical excitability, while the cathodal stimulation decreases it. Although tDCS is a promising treatment approach for chronic pain as well as for neuropsychiatric diseases and other neurological disorders, several complex neurobiological mechanisms that are not well understood are involved in its effect. The purpose of this systematic review is to summarize the current knowledge regarding the neurobiological mechanisms involved in the effects of tDCS. The initial search resulted in 171 articles. After applying inclusion and exclusion criteria, we screened 32 full-text articles to extract findings about the neurobiology of tDCS effects including investigation of cortical excitability parameters. Overall, these findings show that tDCS involves a cascade of events at the cellular and molecular levels. Moreover, tDCS is associated with glutamatergic, GABAergic, dopaminergic, serotonergic, and cholinergic activity modulation. Though these studies provide important advancements toward the understanding of mechanisms underlying tDCS effects, further studies are needed to integrate these mechanisms as to optimize clinical development of tDCS.

Keywords: functional effects; long-term depression; long-term potentiation; neurobiology; neuromodulation; tDCS.

References

    1. Abe K., Nakata A., Mizutani A., Saito H. (1994). Facilitatory but nonessential role of the muscarinic cholinergic system in the generation of long-term potentiation of population spikes in the dentate gyrus in vivo. Neuropharmacology 33, 847–85210.1016/0028-3908(94)90180-5
    1. Antal A., Paulus W. (2011). A case of refractory orofacial pain treated by transcranial direct current stimulation applied overhand motor area in combination with NMDA agonist drug intake. Brain Stimul. 4, 117–12110.1016/j.brs.2010.09.003
    1. Bailey C. H., Giustetto M., Huang Y. Y., Hawkins R. D., Kandel E. R. (2000). Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory? Nat. Rev. Neurosci. 1, 11–2010.1038/35036191
    1. Bindman L. J., Lippold O. C., Redfearn J. W. (1964). The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J. Physiol. 172, 369–382
    1. Boggio P. S., Rigonatti S. P., Ribeiro R. B., Myczkowski M. L., Nitsche M. A., Pascual-Leone A., et al. (2008). A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. Int. J. Neuropsychopharmacol. 11, 249–25410.1017/S1461145707007833
    1. Borckardt J. J., Bikson M., Frohman H., Reeves S. T., Datta A., Bansal V., et al. (2012). A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception. J. Pain 13, 112–12010.1016/j.jpain.2011.07.001
    1. Borckardt J. J., Romagnuolo J., Reeves S. T., Madan A., Frohman H., Beam W., et al. (2011). Feasibility, safety, and effectiveness of transcranial direct current stimulation for decreasing post-ERCP pain: a randomized, sham-controlled, pilot study. Gastrointest. Endosc. 73, 1158–116410.1016/j.gie.2011.01.050
    1. Brocher S., Artola A., Singer W. (1992). Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex. Brain Res. 573, 27–3610.1016/0006-8993(92)90110-U
    1. Brunoni A. R., Ferrucci R., Bortolomasi M., Vergari M., Tadini L., Boggio P. S., et al. (2011). Transcranial direct current stimulation (tDCS) in unipolar vs. bipolar depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 96–10110.1016/j.pnpbp.2010.09.010
    1. Chaieb L., Antal A., Terney D., Paulus W. (2012). Pharmacological modulation of the short-lasting effects of antagonistic direct current-stimulation over the human motor cortex. Front. Psychiatry 3:67.10.3389/fpsyt.2012.00067
    1. Cheeran B., Talelli P., Mori F., Koch G., Suppa A., Edwards M., et al. (2008). A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J. Physiol. 586, 5717–572510.1113/jphysiol.2008.159905
    1. Creutzfeldt O. D., Fromm G. H., Kapp H. (1962). Influence of transcortical d–c currents on cortical neuronal activity. Exp. Neurol. 5, 436–45210.1016/0014-4886(62)90056-0
    1. DaSilva A. F., Mendonca M. E., Zaghi S., Lopes M., DosSantos M. F., Spierings E. L., et al. (2012). tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine headache. Headache 52, 1283–129510.1111/j.1526-4610.2012.02196.x
    1. DaSilva A. F., Volz M. S., Bikson M., Fregni F. (2011). Electrode positioning and montage in transcranial direct current stimulation. JOVE 51, 1–11
    1. Dieckhöfer A., Waberski T. D., Nitsche M., Paulus W., Buchner H., Gobbelé R. (2006). Transcranial direct current stimulation applied over the somatosensory cortex: differential effect on low and high frequency SEPs. Clin. Neurophysiol. 117, 2221–222710.1016/j.clinph.2006.07.136
    1. Dubé J., Rochette-Drouin O., Lévesque P., Gauvin R., Roberge C. J., Auger F. A., et al. (2012). Human keratinocytes respond to direct current stimulation by increasing intracellular calcium: preferential response of poorly differentiated cells. J. Cell Physiol. 227, 2660–266710.1002/jcp.23008
    1. Fregni F., Boggio P. S., Nitsche M., Bermpohl F., Antal A., Feredoes E., et al. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res. 166, 23–3010.1007/s00221-005-2334-6
    1. Fregni F., Boggio P. S., Nitsche M. A., Marcolin M. A., Rigonatti S. P., Pascual-Leone A. (2006). Treatment of major depression with transcranial direct current stimulation. Bipolar Disord. 8, 203–20410.1111/j.1399-5618.2006.00291.x
    1. Fritsch B., Reis J., Martinowich K., Schambra H. M., Ji Y., Cohen L. G., et al. (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66, 198–20410.1016/j.neuron.2010.03.035
    1. Hansen N., Obermann M., Poitz F., Holle D., Diener H. C., Antal A., et al. (2010). Modulation of human trigeminal and extracranial nociceptive processing by transcranial direct current stimulation of the motor cortex. Cephalalgia 31, 661–67010.1177/0333102410390394
    1. Hasan A., Nitsche M. A., Rein B., Schneider-Axmann T., Guse B., Gruber O., et al. (2011). Dysfunctional long-term potentiation-like plasticity in schizophrenia revealed by transcranial direct current stimulation. Behav. Brain Res. 224, 15–2210.1016/j.bbr.2011.05.017
    1. Hasselmo M. E., Barkai E. (1995). Cholinergic modulation of activity dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation. J. Neurosci. 15, 6592–6604
    1. Hattori Y., Moriwaki A., Hori Y. (1990). Biphasic effects of polarizing current on adenosine sensitive generation of cyclic AMP in rat cerebral cortex. Neurosci. Lett. 116, 320–32410.1016/0304-3940(90)90094-P
    1. Islam N., Aftabuddin M., Moriwaki A., Hattori Y., Hori Y. (1995). Increase in the calcium level following anodal polarization in the rat brain. Brain Res. 684, 206–20810.1016/0006-8993(95)00434-R
    1. Khatib L., Golan D. E., Cho M. (2004). Physiologic electrical stimulation provokes intracellular calcium increase mediated by phospholipase C activation in human osteoblasts. FASEB J. 18, 1903–1905
    1. Kim S. J., Kim B. K., Ko Y. J., Bang M. S., Kim M. H., Han T. R. (2010). Functional and histologic changes after repeated transcranial direct current stimulation in rat stroke model. J. Korean Med. Sci. 25, 1499–150510.3346/jkms.2010.25.8.1171
    1. Knotkova H., Rosedale M., Strauss S. M., Horne J., Soto E., Cruciani R. A., et al. (2012). Using transcranial direct current stimulation to treat depression in HIV-infected persons: the outcomes of a feasibility study. Front. Psychiatry 3:59.10.3389/fpsyt.2012.00059
    1. Koliatsos V. E., Kecojevic A., Troncoso J. C., Gastard M. C., Bennett D. A., Schneider J. A. (2006). Early involvement of small inhibitory cortical interneurons in Alzheimer’s disease. Acta Neuropathol. 112, 147–16210.1007/s00401-006-0068-6
    1. Kumru H., Soler D., Vidal J., Navarro X., Tormos J. M., Pascual-Leone1 A., et al. (2012). The effects of transcranial direct current stimulation with visual illusion in neuropathic pain due to spinal cord injury: an evoked potentials and quantitative thermal testing study. Eur. J. Pain. [Epub ahead of print].
    1. Kuo M. F., Grosch J., Fregni F., Paulus W., Nitsche M. A. (2007). Focusing effect of acetylcholine on neuroplasticity in the human motor cortex. J. Neurosci. 27, 14442–1444710.1523/JNEUROSCI.2391-07.2007
    1. Kuo M. F., Paulus W., Nitsche M. A. (2008). Boosting focally-induced brain plasticity by dopamine. Cereb. Cortex 18, 648–65110.1093/cercor/bhm098
    1. Lang N., Nitsche M. A., Paulus W., Rothwell J. C., Lemon R. N. (2004). Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Exp. Brain Res. 156, 439–44310.1007/s00221-003-1800-2
    1. Lefaucheur J. P. (2008a). “TMS and pain,” in The Oxford Handbook of Transcranial Stimulation, eds Wasserman E. A., Epstein C. M., Ziemann U., Walsh V., Paus T., Lisanby S. (New York: Oxford University; ), 717–736
    1. Lefaucheur J. P. (2008b). Use of repetitive transcranial magnetic stimulation in pain relief. Expert Rev. Neurother. 8, 799–80810.1586/14737175.8.5.799
    1. Liebetanz D., Nitsche M. A., Tergau F., Paulus W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after effects of human motor cortex excitability. Brain 125, 2238–224710.1093/brain/awf238
    1. Lindenberg R., Renga V., Zhu L. L., Nair D., Schlaug G. (2010). Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 75, 2176–218410.1212/WNL.0b013e318202013a
    1. Loo C. K., Sachdev P., Martin D., Pigot M., Alonzo A., Malhi G. S., et al. (2010). A double blind, sham-controlled trial of transcranial direct current stimulation for the treatment of depression. Int. J. Neuropsychopharmacol. 13, 61–6910.1017/S1461145709990411
    1. Márquez-Ruiz J., Leal-Campanario R., Sánchez-Campusano R., Molaee-Ardekani B., Wendling F., Miranda P. C., et al. (2012). Transcranial direct current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proc. Natl. Acad. Sci. U.S.A. 109, 6710–671510.1073/pnas.1121147109
    1. Monte-Silva K., Kuo M. F., Thirugnanasambandam N., Liebetanz D., Paulus W., Nitsche M. A. (2009). Dose-dependent inverted U-shaped effect of dopamine (D2-like) receptor activation on focal and nonfocal plasticity in humans. J. Neurosci. 29, 6124–613110.1523/JNEUROSCI.0728-09.2009
    1. Monte-Silva K., Liebetanz D., Grundey J., Paulus W., Nitsche M. A. (2010). Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. J. Physiol. (Lond.) 588, 3415–342410.1113/jphysiol.2010.190181
    1. Moriwaki A. (1991). Polarizing currents increase noradrenaline-elicited accumulation of cyclic AMP in rat cerebral cortex. Brain Res. 544, 248–25210.1016/0006-8993(91)90061-Y
    1. Nitsche M. (2005). Pharmacological characterisation and modulation of neuroplasticity in humans. Curr. Neuropharmacol. 3, 217–22910.2174/1570159054368268
    1. Nitsche M. A., Doemkes S., Karaköse T., Antal A., Liebetanz D., Lang N., et al. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. J. Neurophysiol. 97, 3109–311710.1152/jn.01312.2006
    1. Nitsche M. A., Kuo M. F., Grosch J., Bergner C., Monte-Silva K., Paulus W. (2009a). D1-receptor impact on neuroplasticity in humans. J. Neurosci. 29, 2648–265310.1523/JNEUROSCI.5366-08.2009
    1. Nitsche M. A., Kuo M. F., Karrasch R., Wächter B., Liebetanz D., Paulus W. (2009b). Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biol. Psychiatry 66, 503–50810.1016/j.biopsych.2009.03.022
    1. Nitsche M. A., Lampe C., Antal A., Liebetanz D., Lang N., Tergau F., et al. (2006). Dopaminergic modulation of long-lasting direct current induced cortical excitability changes in the human motor cortex. Eur. J. Neurosci. 23, 1651–165710.1111/j.1460-9568.2006.04676.x
    1. Nitsche M. A., Liebetanz D., Schlitterlau A., Henschke U., Fricke K., Frommann K., et al. (2004a). GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur. J. Neurosci. 19, 2720–272610.1111/j.0953-816X.2004.03398.x
    1. Nitsche M. A., Jaussi W., Liebetanz D., Lang N., Tergau F., Paulus W. (2004b). Consolidation of human cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology 29, 1573–157810.1038/sj.npp.1300517
    1. Nitsche M. A., Grundey J., Liebetanz D., Lang N., Tergau F., Paulus W. (2004c). Catecholaminergic consolidation of motor cortical neuroplasticity in humans. Cereb. Cortex 14, 1240–124510.1093/cercor/bhh085
    1. Nitsche M. A., Nitsche M. S., Klein C. C., Tergau F., Rothwell J. C., Paulus W. (2003a). Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin. Neurophysiol. 114, 600–60410.1016/S1388-2457(02)00412-1
    1. Nitsche M. A., Fricke K., Henschke U., Schlitterlau A., Liebetanz D., Lang N., et al. (2003b). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 553, 293–30110.1113/jphysiol.2003.049916
    1. Nitsche M., Liebetanz D., Lang N., Antal A., Tergau F., Paulus W. (2003c). Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin. Neurophysiol. 114, 2220–222210.1016/S1388-2457(02)00412-1
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. (Lond.) 527, 633–63910.1111/j.1469-7793.2000.t01-1-00633.x
    1. Nitsche M. A., Paulus W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57, 1899–190110.1212/WNL.57.10.1899
    1. Nitsche M. A., Seeber A., Frommann K., Klein C. C., Rochford C., Nitsche M. S., et al. (2005). Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J. Physiol. (Lond.) 568, 291–30310.1113/jphysiol.2005.092429
    1. Otmakhova N. A., Lisman J. E. (1996). D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses. J. Neurosci. 16, 7478–7486
    1. Otmakhova N. A., Lisman J. E. (1998). D1/D5 dopamine receptors inhibit depotentiation at CA1 synapses via cAMP-dependent mechanism. J. Neurosci. 18, 1270–1279
    1. Patil M. M., Linster C., Lubenov E., Hasselmo M. E. (1998). Cholinergic agonist carbachol enables associative long-term potentiation in piriform cortex slices. J. Neurophysiol. 80, 2467–2474
    1. Paulus W. (2004). Outlasting excitability shifts induced by direct current stimulation of the human brain. Suppl. Clin. Neurophysiol. 57, 708–71410.1016/S1567-424X(09)70411-8
    1. Polanía R., Paulus W., Antal A., Nitsche M. A. (2011). Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study. Neuroimage 54, 2287–229610.1016/j.neuroimage.2010.09.085
    1. Radman T., Ramos R. L., Brumberg J. C., Bikson M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2, 215–228, 228.e1-3.10.1016/j.brs.2009.03.007
    1. Rango M., Cogiamanian F., Marceglia S., Barberis B., Arighi A., Biondetti P., et al. (2008). Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: a 1H-MRS study. Magn. Reson. Med. 60, 782–78910.1002/mrm.21709
    1. Ranieri F., Podda M. V., Riccardi E., Frisullo G., Dileone M., Profice P., et al. (2012). Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. J. Neurophysiol. 107, 1868–188010.1152/jn.00319.2011
    1. Riberto M., Alfieri F. M., Pacheco K. M. B., Leite V. D., Kaihami H. N., Fregni F., et al. (2011). Efficacy of transcranial direct current stimulation coupled with a multidisciplinary rehabilitation program for the treatment of fibromyalgia. Open Rheumatol. J. 5, 45–5010.2174/1874312901105010045
    1. Ruohonen J., Karhu J. (2012). tDCS possibly stimulates glial cells. Clin. Neurophysiol. 123, 2006–200910.1016/j.clinph.2012.02.082
    1. Scelzo E., Giannicola G., Rosa M., Ciocca M., Ardolino G., Cogiamanian F., et al. (2011). Increased short latency afferent inhibition after anodal transcranial direct current stimulation. Neurosci. Lett. 498, 167–17010.1016/j.neulet.2011.05.007
    1. Stagg C. J., Bachtiar V., Johansen-Berg H. (2011). The role of GABA in human motor learning. Curr. Biol. 21, 480–48410.1016/j.cub.2011.01.069
    1. Stagg C. J., Best J. G., Stephenson M. C., O’Shea J., Wylezinska M., Kincses Z. T., et al. (2009). Polarity sensitive modulation of cortical neurotransmitters by transcranial stimulation. J. Neurosci. 29, 5202–520610.1523/JNEUROSCI.4432-08.2009
    1. Stagg C. J., Nitsche M. A. (2011). Physiological basis of transcranial direct current stimulation. Neuroscientist 17, 37–5310.1177/1073858410386614
    1. Terney D., Bergmann I., Poreisz C., Chaieb L., Boros K., Nitsche M. A., et al. (2008). Pergolide increases the efficacy of cathodal direct current stimulation to reduce the amplitude of laser-evoked potentials in humans. J. Pain Symptom Manage. 36, 79–9110.1016/j.jpainsymman.2007.08.014
    1. Tessarollo L. (1998). Pleiotropic functions of neurotrophins in development. Cytokine Growth Factor Rev. 9, 125–13710.1016/S1359-6101(98)00003-3
    1. Thirugnanasambandam N., Grundey J., Adam K., Drees A., Skwirba A. C., Lang N., et al. (2011). Nicotinergic impact on focal and non-focal neuroplasticity induced by non-invasive brain stimulation in non-smoking humans. Neuropsychopharmacology 36, 879–88610.1038/npp.2010.227
    1. Utz K. S., Dimova V., Oppenlander K., Kerkhoff G. (2010). Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology – a review of current data and future implications. Neuropsychologia 48, 2789–281010.1016/j.neuropsychologia.2010.06.002
    1. Vanderschuren L. J., Schoffelmeer A. N., Mulder A. H., De Vries T. J. (1999). Dopaminergic mechanisms mediating the long-term expression of locomotor sensitization following pre-exposure to morphine or amphetamine. Psychopharmacology (Berl). 143, 244–25310.1007/s002130050943
    1. Vanneste S., Plazier M., Ost J., van der Loo E., Heyning P. V., Ridder D. (2010). Bilateral dorsolateral prefrontal cortex modulation for tinnitus by transcranial direct current stimulation: a preliminary clinical study. Exp. Brain Res. 202, 779–78510.1007/s00221-010-2183-9
    1. Wagner T., Fregni F., Fecteau S., Grodzinsky A., Zahn M., Pascual-Leone A. (2007a). Transcranial direct current stimulation: a computer-based human model study. Neuroimage 35, 1113–112410.1016/j.neuroimage.2007.01.027
    1. Wagner T., Valero-Cabre A., Pascual-Leone A. (2007b). Noninvasive human brain stimulation. Annu. Rev. Biomed. Eng. 9, 527.10.1146/annurev.bioeng.9.061206.133100
    1. Yoon K. J., Oh B. M., Kim D. Y. (2012). Functional improvement and neuroplastic effects of anodal transcranial direct current stimulation (tDCS) delivered 1 day vs. 1 week after cerebral ischemia in rats. Brain Res. 1452, 61–7210.1016/j.brainres.2012.02.062
    1. Zaghi S., Heine N., Fregni F. (2009). Brain stimulation for the treatment of pain: a review of costs, clinical effects, and mechanisms of treatment for three different central neuromodulatory approaches. J. Pain Manag. 2, 339–352

Source: PubMed

3
Suscribir