Ferulic Acid: A Hope for Alzheimer's Disease Therapy from Plants

Antonella Sgarbossa, Daniela Giacomazza, Marta di Carlo, Antonella Sgarbossa, Daniela Giacomazza, Marta di Carlo

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of extracellular amyloid-beta peptide (Aβ) and intracellular neurofibrillar tangles, associated with loss of neurons in the brain and consequent learning and memory deficits. Aβ is the major component of the senile plaques and is believed to play a central role in the development and progress of AD both in oligomer and fibril forms. Inhibition of the formation of Aβ fibrils as well as the destabilization of preformed Aβ in the Central Nervous System (CNS) would be an attractive therapeutic target for the treatment of AD. Moreover, a large number of studies indicate that oxidative stress and mitochondrial dysfunction may play an important role in AD and their suppression or reduction via antioxidant use could be a promising preventive or therapeutic intervention for AD patients. Many antioxidant compounds have been demonstrated to protect the brain from Aβ neurotoxicity. Ferulic acid (FA) is an antioxidant naturally present in plant cell walls with anti-inflammatory activities and it is able to act as a free radical scavenger. Here we present the role of FA as inhibitor or disaggregating agent of amyloid structures as well as its effects on biological models.

Keywords: Alzheimer’s disease; antioxidants; apoptosis; fibrillogenesis; nanotechnology; oxidative stress.

Figures

Figure 1
Figure 1
Chemical structure of ferulic acid.
Figure 2
Figure 2
Some pathologies against which ferulic acid has given promising results.
Figure 3
Figure 3
Schematic representation of the amyloid fibrillation.

References

    1. Sosulski F., Krygier K., Hogge L. Free, esterified, and insoluble-bound phenolic acids. 3. Composition of phenolic acids in cereal and potato flours. J. Agric. Food Chem. 1982;30:337–340. doi: 10.1021/jf00110a030.
    1. Lempereur I., Rouau X., Abecassis J. Genetic and agronomic variation in arabinoxylan and ferulic acid contents of durum wheat (Triticum durum L.) grain and its milling fractions. J. Cereal Sci. 1997;25:103–110. doi: 10.1006/jcrs.1996.0090.
    1. Kumar N., Pruthi V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014;4:86–93. doi: 10.1016/j.btre.2014.09.002.
    1. Vanholme R., Demeds B., Morrel K., Ralph J., Boerjan W. Lignin biosynthesis and structure. Plant Physiol. 2010;153:895–905. doi: 10.1104/pp.110.155119.
    1. Strack D. Metabolism of hydroxycinnamic acid conjugates. Bull. Liaison Groupe Polyphen. 1990;15:55–64.
    1. Graf E. Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 1992;3:435–448. doi: 10.1016/0891-5849(92)90184-I.
    1. Rosazza J.P.N., Huang Z., Dostal L., Volm T., Rousseau B. Review: Biocatalytic transformations of ferulic acid: An abundant aromatic natural product. J. Ind. Microbiol. 1995;15:457–471. doi: 10.1007/BF01570016.
    1. Lyu S.W., Blum U. Effects of ferulic acid, an allelopathic compound, on net P, K, and water uptake by cucumber seedlings in a split-root system. J. Chem. Ecol. 1990;16:2429–2439. doi: 10.1007/BF01017466.
    1. Wojcicka A. Cereal phenolic compounds as biopesticides of ceral aphids. Pol. J. Environ. Stud. 2010;19:1337–1343.
    1. Suga T., Ohta S., Munesada K., Ide N., Kurokawa M., Shimizu M., Ohta E. Endogenous pine wood nematicidal substances in pines, Pinus massoniana, P. strobus and P. palustris. Phytochemistry. 1993;33:1395–1401. doi: 10.1016/0031-9422(93)85098-C.
    1. Putman L.J., Laks P.E., Pruner M.S. Chemical constituents of black locust bark and their biocidal activity. Holzforschung. 1989;43:219–224. doi: 10.1515/hfsg.1989.43.4.219.
    1. Clifford M.N. Chlorogenic acids and other cinnamates—Nature, occurrence and dietary burden. J. Sci. Food Agric. 1999;79:362–372. doi: 10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>;2-D.
    1. Konishi Y., Zhao Z., Shimizu M. Phenolic acids are absorbed from rats stomach with different absorption rates. J. Agric. Food Chem. 2006;54:7539–7543. doi: 10.1021/jf061554+.
    1. Yang C., Tian Y., Zhang Z.J., Xu F.G., Chen Y. High-performance liquid chromatography-electrospray ionization mass spectrometry determination of sodium ferulate in human plasma. J. Pharm. Biomed. Anal. 2007;43:945–950. doi: 10.1016/j.jpba.2006.09.027.
    1. Szwajgier D., Jakubczyk A. Biotransformation of ferulic acid by Lactobacillus acidophilus K1 and selected Bifidobacterium strains. Acta Sci. Pol. Technol. Aliment. 2010;9:45–59.
    1. Rondini L., Peyrat-Maillard M.N., Marsset-Baglieri A., Fromentin G., Durand P., Tomè D., Prost M., Berset C. Bound ferulic acid from bran is more bioavailable than the free compound in rat. J. Agric. Food Chem. 2004;52:4338–4343. doi: 10.1021/jf0348323.
    1. Zhao Z., Egashira Y., Sanada H. Ferulic acid sugar esters are recovered in rat plasma and urine mainly as the sulfoglucuronide of ferulic acid. J. Nutr. 2003;133:1355–1361.
    1. Zhao Z., Egashira Y., Sanada H. Digestion and absorption of ferulic acid sugar esters in rat gastrointestinal tract. J. Agric. Food Chem. 2003;51:5534–5539. doi: 10.1021/jf034455u.
    1. Jacobson E.A., Newmark H., Baptista J., Bruce W.R. A preliminary investigation of the metabolism of dietary phenolics in humans. Nutr. Rep. Int. 1983;28:1409–1417.
    1. Bourne L., Paganga G., Baxter D., Hughes P., Rice-Evans C. Absorption of ferulic acid from low-alcohol beer. Free Radic. Res. 2000;32:273–280. doi: 10.1080/10715760000300281.
    1. Virgili F., Pagana G., Bourne L., Rimbach G., Natella F., Rice-Evans C. Ferulic acid excretion as a marker of consumption of a French maritime pine (Pinus maritima) bark extract. Free Radic. Biol. Med. 2000;28:1249–1256. doi: 10.1016/S0891-5849(00)00244-6.
    1. Hermann K. Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit. Rev. Food Sci. Nutr. 1989;28:315–347. doi: 10.1080/10408398909527504.
    1. Zhao Z., Egashira Y., Sanada H. Ferulic acid is quickly absorbed from rat stomach as the free form and then conjugated mainly in liver. J. Nutr. 2004;134:3083–3088.
    1. Kern S.M., Bennett R.N., Needs P.W., Mellon F.A., Kroon P.A., Garcia-Conesa M.T. Characterization of metabolites of hydroxycinnamates in the in vitro model of human small intestinal epithelium Caco-2 cells. J. Agric. Food Chem. 2003;51:7884–7891. doi: 10.1021/jf030470n.
    1. Uraji M., Kimura M., Inoue Y., Kawakami K., Kumagay Y., Harazono K., Hatanaka T. Enzymatic production of ferulic acid from defatted rice bran by using a combination of bacterial enzymes. Appl. Biochem. Biotechnol. 2013;171:1085–1093. doi: 10.1007/s12010-013-0190-6.
    1. Dutt S. General synthesis of α-unsaturated acids from malonic acid. Q. J. Chem. Soc. 1925;1:297–301.
    1. Srinivasan M., Sudheer A.R., Menon V.P. Ferulic acid: Therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 2007;40:92–100. doi: 10.3164/jcbn.40.92.
    1. Kanski J., Aksenova M., Stoyanova A., Butterfield D.A. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: Structure-activity studies. J. Nutr. Biochem. 2002;13:273–281. doi: 10.1016/S0955-2863(01)00215-7.
    1. Itagaki S., Kurokawa T., Nakata C., Saito Y., Oikawa S., Kobayashi M., Hirano T., Iseki K. In vitro and in vivo antioxidant properties of ferulic acid: A comparative study with other natural oxidation inhibitors. Food Chem. 2009;114:466–471. doi: 10.1016/j.foodchem.2008.09.073.
    1. Rocha L.D., Monteiro M.C., Teodoro A.J. Anticancer properties of hydroxicinnamic acids—A review. Cancer Clinical Oncol. 2012;1:109–121.
    1. Serafim T.L., Carvalho F.S., Marques M.P., Calheiros R., Silva T. Lipophilic caffeic and ferulic acid derivatives presenting cytotoxicity against human breast cancer cells. Chem. Res. Toxicol. 2011;16:763–774. doi: 10.1021/tx200126r.
    1. Ohsaki A.Y., Shirakawa H., Koseki T., Komai M. Novel effects of a single administration of ferulic acid on the regulation of blood pressure and the hepatic lipid metabolic profile in stroke-prone spontaneously hypertensive rats. J. Agric. Food Chem. 2008;56:2825–2830.
    1. Lin F.H., Lin J.Y., Gupta R.D., Tournas J.A., Burch J.A., Selim M.A., Monteiro-Riviere N.A., Grichnick J.M., Zielinski J., Pinnell S.R. Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J. Investig. Dermatol. 2005;125:826–832. doi: 10.1111/j.0022-202X.2005.23768.x.
    1. Jung E.H., Kim S.R., Hwang I.K., Ha T.Y. Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. J. Agric. Food Chem. 2007;55:9800–9804. doi: 10.1021/jf0714463.
    1. Fetoni A.R., de Bartolo P., Eramo S.L.M., Rolesi R., Paciella F., Bergamini C., Fato R., Paludetti G., Petrosini L., Troiani L. Noise-induced hearing loss (NIHL) as a target of oxidative stress-mediated damage: Cochlear and cortical responses after an increase in antioxidant defense. J. Neurosci. 2013;33:4011–4023. doi: 10.1523/JNEUROSCI.2282-12.2013.
    1. Calabrese V., Calafato S., Puleo E., Cornelius C., Sapienza M., Morganti P., Mancuso C. Redox regulation of cellular stress response by ferulic acid ethyl ester in human dermal fibroblasts: Role of vitagenes. Clin. Dermatol. 2008;26:358–363. doi: 10.1016/j.clindermatol.2008.01.005.
    1. Ferri C.P., Prince M., Brayne C., Brodaty H., Fratiglioni L., Ganguli M., Hall K., Hasegawa K., Hendrie H., Huang Y., et al. Global prevalence of dementia: A Delphi consensus study. Lancet. 2005;366:2112–2117. doi: 10.1016/S0140-6736(05)67889-0.
    1. Mancuso C., Siciliano R., Barone E., Butterfield D.A., Preziosi P. Pharmacologists and Alzheimer disease therapy: To boldly go where no scientist has gone before. Expert. Opin. Investig. Drugs. 2011;20:1243–1261. doi: 10.1517/13543784.2011.601740.
    1. Mannini B., Mulvihill E., Sgromo C., Cascella R., Khodarahmi R., Ramazzotti M., Dobson C.M., Cecchi C., Chiti F. Toxicity of protein oligomers is rationalized by a function combining size and surface hydrophobicity. ACS Chem. Biol. 2014;9:2309–2317. doi: 10.1021/cb500505m.
    1. Picone P., Carrotta R., Montana G., Nobile M.R., San Biagio P.L., di Carlo M. Aβ-oligomers and fibrillar aggregates induce different apoptotic pathways in LAN5 neuroblastoma cell cultures. Biophys. J. 2009;96:4200–4211. doi: 10.1016/j.bpj.2008.11.056.
    1. Novitskaya V., Bocharova O.V., Bronstein I., Baskakov I.V. Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons. J. Biol. Chem. 2006;281:13828–13836. doi: 10.1074/jbc.M511174200.
    1. Bucciantini M., Nosi D., Forzan M., Russo E., Calamai M., Pieri L., Formigli L., Quercioli F., Soria S., Pavone F., et al. Toxic effects of amyloid fibrils on cell membranes: The importance of ganglioside GM1. FASEB J. 2012;26:818–831. doi: 10.1096/fj.11-189381.
    1. Bucciantini M., Rigacci S., Stefani M. Amyloid aggregation: Role of biological membranes and the aggregate–membrane system. J. Phys. Chem. Lett. 2014;5:517–527. doi: 10.1021/jz4024354.
    1. Gharibyan A.L., Zamotin V., Yanamandra K., Moskaleva O.S., Margulis B.A., Kostanyan I.A., Morozova-Roche L.A. Lysozyme amyloid oligomers and fibrils induce cellulardeath via different apoptotic/necrotic pathways. J. Mol. Biol. 2007;365:1337–1349. doi: 10.1016/j.jmb.2006.10.101.
    1. Lee C.C., Nayak A., Sethuraman A., Belfort G., McRae G.J. A three-stage kinetic model of amyloid fibrillation. Biophys. J. 2007;92:3448–3458. doi: 10.1529/biophysj.106.098608.
    1. Morris A.M., Watzky M.A., Agar J.N., Finke R.G. Fitting Neurological Protein Aggregation Kinetic Data via a 2-Step, Minimal/“Ockham’s Razor” Model: The Finke-Watzky Mechanism of Nucleation Followed by Autocatalytic Surface Growth. Biochemistry. 2008;47:2413–2427. doi: 10.1021/bi701899y.
    1. Gazit E. A possible role for π-stacking in self-assembly of amyloid fibrils. FASEB J. 2002;16:77–83. doi: 10.1096/fj.01-0442hyp.
    1. Hunter C.A., Lawson K.R., Perkins J., Urch C.J. Aromatic interactions. J. Chem. Soc. 1999;2:651–669. doi: 10.1039/b008495f.
    1. Lorenzo A., Yankner B.A. β-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc. Natl. Acad. Sci. USA. 1994;91:12243–12247. doi: 10.1073/pnas.91.25.12243.
    1. Lee V.M. Amyloid binding ligands as Alzheimer’s disease therapies. Neurobiol. Aging. 2002;23:1039–1042. doi: 10.1016/S0197-4580(02)00121-5.
    1. Bemporad F., Taddei N., Stefani M., Chiti F. Assessing the role of aromatic residues in the amyloid aggregation of human muscle acylphosphatase. Protein Sci. 2006;15:862–870. doi: 10.1110/ps.051915806.
    1. Porat Y., Abramowitz A., Gazit E. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 2006;67:27–37. doi: 10.1111/j.1747-0285.2005.00318.x.
    1. Sgarbossa A. Natural biomolecules and protein aggregation: Emerging strategies against amyloidogenesis. Int. J. Mol. Sci. 2012;13:17121–17137. doi: 10.3390/ijms131217121.
    1. Yang F., Lim G.P., Begum A.N., Ubeda O.J., Simmons M.R., Ambegaokar S.S., Chen P.P., Kayed R., Glabe C.G., Frautschy S.A., et al. Curcumin inhibits formation of amyloid-beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 2005;280:5892–5901. doi: 10.1074/jbc.M404751200.
    1. Howlett D.R., George A.R., Owen D.E., Ward R.V., Markwell R.E. Common structural features determine the effectiveness of carvedilol, daunomycin and rolitetracycline as inhibitors of Alzheimer β-amyloid fibril formation. Biochem. J. 1999;343:419–423. doi: 10.1042/0264-6021:3430419.
    1. Sgarbossa A., Buselli D., Lenci F. In vitro perturbation of aggregation processes in β-amyloid peptides: A spectroscops study. FEBS Lett. 2008;582:3288–3292. doi: 10.1016/j.febslet.2008.08.039.
    1. Bramanti E., Lenci F., Sgarbossa A. Effects of Hypericin on the Structure and Aggregation Properties of β-Amyloid Peptides. Eur. Biophys. J. 2010;39:1493–1501. doi: 10.1007/s00249-010-0607-x.
    1. Picone P., Bondi M.L., Montana G., Bruno A., Pitarresi G., Giammona G., di Carlo M. Ferulic acid inhibits oxidative stress and cell death induced by Aβ oligomers: Improved delivery by solid lipid nanoparticles. Free Radical Res. 2009;43:1133–1145. doi: 10.1080/10715760903214454.
    1. Bondì M.L., Montana G., Craparo E.F., Picone P., Capuano G., di Carlo M., Giammona G. Ferulic acid loaded lipid nanostructures as drug delivery systems for Alzheimer’s disease: preparation, characterization and cytotoxicity studies. Curr. Nanosci. 2009;5:26–32. doi: 10.2174/157341309787314656.
    1. Hamaguchi T., Ono K., Yamad M. Curcumin and Alzheimer’s disease. CNS Neurosci. Ther. 2010;16:285–297. doi: 10.1111/j.1755-5949.2010.00147.x.
    1. Ono K., Hirohata M., Yamada M. Ferulic acid destabilizes preformed beta-amyloid fibrils in vitro. Biochem. Biophys. Res. Commun. 2005;336:444–449. doi: 10.1016/j.bbrc.2005.08.148.
    1. Hamaguchi T., Ono K., Murase A., Yamada M. Phenolic compounds prevent Alzheimer pathology through different effects on the amyloid-beta aggregation pathway. Am. J. Pathol. 2009;175:2557–2565. doi: 10.2353/ajpath.2009.090417.
    1. Kim H.S., Cho J.Y., Kim D.H., Yan J.J., Lee H.K., Suh H.W., Song D.K. Inhibitory effects of long term administration of ferulic acid on microglial activation induced by intercerebroventricular injection of beta amyloid peptide (1–42) in mice. Biol. Pharm. Bull. 2004;27:120–121. doi: 10.1248/bpb.27.120.
    1. Yan J.J., Cho J.Y., Kim H.S., Kim K.L., Jung J.S., Huh S.O., Suh H.W., Kim Y.H., Song D.K. Protection against β-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br. J. Pharmacol. 2001;133:89–96. doi: 10.1038/sj.bjp.0704047.
    1. Sultana R., Ravagna A., Mohmmad-Abdul H., Calabrese V., Butterfield D.A. Ferulic acid ethyl ester protects neurons against amyloid β-peptide(1–42)-induced oxidative stress and neurotoxicity: Relationship to antioxidant activity. J. Neurochem. 2005;92:749–758. doi: 10.1111/j.1471-4159.2004.02899.x.
    1. Ono K., Li L., Takamura Y., Yoshiike Y., Zhu L. Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding. J. Biol. Chem. 2012;287:14631–14643. doi: 10.1074/jbc.M111.325456.
    1. Jagota S., Rajadas J. Effect of phenolic compounds against Aβ aggregation and Aβ-induced toxicity in transgenic C. elegans. Neurochem. Res. 2012;37:40–48. doi: 10.1007/s11064-011-0580-5.
    1. Sgarbossa A., Monti S., Lenci F., Bramanti E., Bizzarri R., Barone V. The effects of ferulic acid on β-amyloid fibrillar structures investigated through experimental and computational techniques. Biochim. Biophys. Acta. 2013;1830:2924–2937. doi: 10.1016/j.bbagen.2012.12.023.
    1. Cui L., Zhang Y., Cao H., Wang Y., Teng T., Ma G., Li Y., Zhang Y. Ferulic acid inhibits the transition of amyloid-β42 monomers to oligomers but accelerates the transition from oligomers to fibrils. J. Alzheimer’s Dis. 2013;37:19–28.
    1. Bramanti E., Fulgentini L., Bizzarri R., Lenci F., Sgarbossa A. β-Amyloid amorphous aggregates induced by the small natural molecule, ferulic acid. J. Phys. Chem. B. 2013;117:13816–13821. doi: 10.1021/jp4079986.
    1. Chauhan V., Chauhan A. Oxidative stress in Alzheimer’s Disease. Pathophysiology. 2006;13:195–208. doi: 10.1016/j.pathophys.2006.05.004.
    1. Di Carlo M., Giacomazza D., Picone P., Nuzzo D., San Biagio P.L. Are oxidative stress and mitochondrial dysfunction the key players in the neurodegerative diseases? Free Radic. Res. 2012;46:1327–1338. doi: 10.3109/10715762.2012.714466.
    1. Gupta V.K., Sharma S.K. Plants as natural antioxidants. Nat. Prod. Radiance. 2005;5:326–334.
    1. Rathore G.S., Suthar M., Pareek A., Gupta R.N. Nutritional antioxidants: A battle for better health. J. Nat. Pharm. 2011;2:2–14. doi: 10.4103/2229-5119.78490.
    1. Vasto S., Barera A., Rizzo C., di Carlo M., Caruso C., Panotopoulous G. Mediterranean diet and longevity: An example of nutraceuticals? Curr. Vasc. Pharm. 2014;12:735–738. doi: 10.2174/1570161111666131219111818.
    1. Vasto S., Buscemi S., Barera A., di Carlo M., Accardi G., Caruso C. Mediterranean diet and healthy ageing: A Sicilian perspective. Gerontology. 2014;60:508–518. doi: 10.1159/000363060.
    1. Barone E., Calabrese V., Mancuso C. Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology. 2009;10:97–108. doi: 10.1007/s10522-008-9160-8.
    1. Markesbery W.R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic. Biol. Med. 1997;23:134–147. doi: 10.1016/S0891-5849(96)00629-6.
    1. Pappolla M.A., Chyan Y.J., Omar R.A., Hsiao K., Perry G., Smith M.A., Bozner P. Evidence of oxidative stress and in vivo neurotoxicity of β-amyloid in a transgenic mouse model of Alzheimer’s disease. A chronic oxidative paradigm for testing antioxidant therapies in vivo. Am. J. Pathol. 1998;152:871–877.
    1. Goldsbury C., Whiteman I.T., Jeong E.V., Lim Y.A. Oxidative stress increases levels of endogenous amyloid-β peptides secreted from primary chick brain neurons. Aging Cell. 2008;7:771–775. doi: 10.1111/j.1474-9726.2008.00423.x.
    1. Mancuso C., Scapagnini G., Curro D., Giuffrida Stella A.M., de Marco C., Butterfield D.A., Calabrese V. Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci. 2007;12:1107–1123. doi: 10.2741/2130.
    1. Cho J.Y., Kim H.S., Kim D.H., Yan J.J., Suh H.W., Song D.K. Inhibitory effects of long-term administration of ferulic acid on astrocyte activation induced by intracerebroventricular injection of β-amyloid peptide (1–42) in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2005;29:901–907. doi: 10.1016/j.pnpbp.2005.04.022.
    1. Yan J.J., Jung J.S., Kim T.K., Hasan A., Hong C.W., Nam J.S., Song D.K. Protective effects of ferulic acid in amyloid precursor protein plus presenilin-1 transgenic mouse model of Alzheimer disease. Biol. Pharm. Bull. 2013;36:140–143. doi: 10.1248/bpb.b12-00798.
    1. Cheng C.Y., Su S.Y., Tang N.Y., Ho T.Y., Chiang S.Y., Hsieh C.L. Ferulic acid provides neuroprotection against oxidative stress-related apoptosis after cerebral ischemia/reperfusion injury by inhibiting ICAM-1 mRNA expression in rats. Brain Res. 2008;1209:136–150. doi: 10.1016/j.brainres.2008.02.090.
    1. Cheng C.Y., Su S.Y., Tang N.Y., Ho T.Y., Lo W.Y., Hsieh C.L. Ferulic acid inhibits nitric oxide-induced apoptosis by enhancing GABAB1 receptor expression in transient focal cerebral ischemia in rats. Acta Pharmacol. Sin. 2010;31:889–899. doi: 10.1038/aps.2010.66.
    1. Koh P.O. Ferulic acid prevents the cerebral ischemic injury-induced decrease of Akt and Bad phosphorylation. Neurosci. Lett. 2012;507:156–160. doi: 10.1016/j.neulet.2011.12.012.
    1. Yabe T., Hirahara H., Harada N., Ito N., Nagai T., Sanagi T., Yamada H. Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo. Neuroscience. 2010;165:515–524. doi: 10.1016/j.neuroscience.2009.10.023.
    1. Mori T., Koyama N., Guillot-Sestier M.V., Tan J., Town T. Ferulic acid is a nutraceutical β-secretase modulator that improves behavioral impairment and Alzheimer-like pathology in transgenic mice. PLoS ONE. 2013;8:e55774. doi: 10.1371/journal.pone.0055774.
    1. Wada T., Penninge J.M. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23:2838–2849. doi: 10.1038/sj.onc.1207556.
    1. Robinson M.J., Cobb M.H. Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 1997;9:180–186. doi: 10.1016/S0955-0674(97)80061-0.
    1. Wang J., Valmikinathan C.M., Yu X. Nanostructures for bypassing blood brain barrier. Curr. Bioact. Compd. 2009;5:195–205. doi: 10.2174/157340709789054777.
    1. Zhou H., Li X.M., Meinkoth J., Pittman R.N. Akt regulates cell survival and apoptosis at a postmitochondrial level. J. Cell Biol. 2000;151:483–494. doi: 10.1083/jcb.151.3.483.
    1. Jin Y., Yan E.Z., Fan Y., Zong Z.H., Qi Z.M., Li Z. Sodium ferulate prevent amyloid-beta-induced neurotoxicity through suppression of p38 MAPK and upregulation of ERK-1/2 and Akt/ protein kinase B in rat hippocampus. Acta Pharmacol. Sin. 2005;26:943–951. doi: 10.1111/j.1745-7254.2005.00158.x.
    1. Jin Y., Fan Y., Yan E.Z., Liu Z., Zong Z.H., Qi Z.M. Effects of sodium ferulate on amyloid-β-induced MKK3/MKK6-p38 MAPK-Hsp27 signal pathway and apoptosis in rat hippocampus. Acta Pharmacol. Sin. 2006;27:1309–1316. doi: 10.1111/j.1745-7254.2006.00414.x.
    1. Mancuso C., Santangelo R. Ferulic acid: Pharmacological and toxicological aspects. Food Chem. Toxicol. 2014;65:185–195. doi: 10.1016/j.fct.2013.12.024.
    1. Reddy A.P., Parthiban S., Vikneswari A., Senthilkumar G.P. A modern review on solid lipid nanoparticles as novel controlled drug delivery system. Int. J. Res. Pharm. Nano Sci. 2014;3:313–325.
    1. Wu W., Lee S.Y., Wu X., Tyler J.Y., Wang H., Ouyang Z., Park K., Xu X.M., Cheng J.X. Neuroprotective ferulic acid (FA)-glycol chitosan (GC) nanoparticles for functional restoration of traumatically injured spinal cord. Biomaterials. 2014;35:2355–2364. doi: 10.1016/j.biomaterials.2013.11.074.
    1. Trombino S., Cassano R., Ferrarelli T., Barone E., Picci N., Mancuso C. Trans-ferulic acid-based solid lipid nanoparticles and their antioxidant effect in rat brain microsomes. Colloids Surf. B Biointerfaces. 2013;109:273–279. doi: 10.1016/j.colsurfb.2013.04.005.
    1. Mancuso C. Key factors which concur to the correct therapeutic evaluation of herbal products in free radical-induced diseases. Front. Pharm. 2015;6:86. doi: 10.3389/fphar.2015.00086.

Source: PubMed

3
Suscribir