Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy

Julian H Elliott, Fiona Wightman, Ajantha Solomon, Khader Ghneim, Jeffrey Ahlers, Mark J Cameron, Miranda Z Smith, Tim Spelman, James McMahon, Pushparaj Velayudham, Gregor Brown, Janine Roney, Jo Watson, Miles H Prince, Jennifer F Hoy, Nicolas Chomont, Rémi Fromentin, Francesco A Procopio, Joumana Zeidan, Sarah Palmer, Lina Odevall, Ricky W Johnstone, Ben P Martin, Elizabeth Sinclair, Steven G Deeks, Daria J Hazuda, Paul U Cameron, Rafick-Pierre Sékaly, Sharon R Lewin, Julian H Elliott, Fiona Wightman, Ajantha Solomon, Khader Ghneim, Jeffrey Ahlers, Mark J Cameron, Miranda Z Smith, Tim Spelman, James McMahon, Pushparaj Velayudham, Gregor Brown, Janine Roney, Jo Watson, Miles H Prince, Jennifer F Hoy, Nicolas Chomont, Rémi Fromentin, Francesco A Procopio, Joumana Zeidan, Sarah Palmer, Lina Odevall, Ricky W Johnstone, Ben P Martin, Elizabeth Sinclair, Steven G Deeks, Daria J Hazuda, Paul U Cameron, Rafick-Pierre Sékaly, Sharon R Lewin

Abstract

Human immunodeficiency virus (HIV) persistence in latently infected resting memory CD4+ T-cells is the major barrier to HIV cure. Cellular histone deacetylases (HDACs) are important in maintaining HIV latency and histone deacetylase inhibitors (HDACi) may reverse latency by activating HIV transcription from latently infected CD4+ T-cells. We performed a single arm, open label, proof-of-concept study in which vorinostat, a pan-HDACi, was administered 400 mg orally once daily for 14 days to 20 HIV-infected individuals on suppressive antiretroviral therapy (ART). The primary endpoint was change in cell associated unspliced (CA-US) HIV RNA in total CD4+ T-cells from blood at day 14. The study is registered at ClinicalTrials.gov (NCT01365065). Vorinostat was safe and well tolerated and there were no dose modifications or study drug discontinuations. CA-US HIV RNA in blood increased significantly in 18/20 patients (90%) with a median fold change from baseline to peak value of 7.4 (IQR 3.4, 9.1). CA-US RNA was significantly elevated 8 hours post drug and remained elevated 70 days after last dose. Significant early changes in expression of genes associated with chromatin remodeling and activation of HIV transcription correlated with the magnitude of increased CA-US HIV RNA. There were no statistically significant changes in plasma HIV RNA, concentration of HIV DNA, integrated DNA, inducible virus in CD4+ T-cells or markers of T-cell activation. Vorinostat induced a significant and sustained increase in HIV transcription from latency in the majority of HIV-infected patients. However, additional interventions will be needed to efficiently induce virus production and ultimately eliminate latently infected cells.

Trial registration: ClinicalTrials.gov NCT01365065.

Conflict of interest statement

JHE, JM and JR's institution has received funding for clinical research from Merck, Sharp & Dohme, Janssen-Cilag, Gilead Sciences, Bristol-Myers Squibb and ViiV Healthcare. JFH's institution has received funding for investigator-initiated research and service on Advisory Boards from Merck, Sharp & Dohme, Janssen-Cilag, Gilead Sciences, and ViiV Healthcare. JW has been a community member of a Merck Sharpe Dohme Advisory Board. MHP has undertaken paid consultancies for Merck. SGD has received grant support from Merck and Gilead. NC has received grant support from Merck. DJH is an employee of and has stock ownership in Merck Sharpe and Dohme. SRL's institution has received honoraria from Merck, Gilead, Viiv Healthcare, Janssen and Bristol Myers Squibb for participation in educational and consulting activities. She has received grants for investigator initiated research from Merck and Gilead. All other authors report no conflicts of interest.This does not alter our adherence to all PLOS policies on sharing data and materials.

Figures

Figure 1. Induction of changes in acetylation…
Figure 1. Induction of changes in acetylation of histone 3, histone 4 and lysine by vorinostat.
Changes in histone (H) acetylation were quantified using flow cytometry which is shown (for representative participant) as (A) fold change in mean fluorescence intensity (MFI) of antibody to acetylated (Ac) H3, Ac lysine (K) and Ac H4 in lymphocytes by size prior to, during and following vorinostat and (B) histograms of the change in MFI with antibody to Ac H3 following vorinostat. (C) PBMC were analysed by western blot using an antibody to Ac H3 and actin (as a control for total protein). A positive control (pos) of splenocytes from a mouse with acute myeloid leukemia treated with the HDACi panobinostat is also shown. (D) Fold change in acetylated (A) Histone 3 (red), (B) Lysine (orange) and (C) Histone 4 (blue) in total lymphocytes is shown for each study participant (solid circle) and the median (IQR) fold change above baseline is shown. *p

Figure 2. Individual changes in CA-US HIV…

Figure 2. Individual changes in CA-US HIV RNA in blood and tissue.

A) Fold change…

Figure 2. Individual changes in CA-US HIV RNA in blood and tissue.
A) Fold change in CA-US HIV RNA following vorinostat in CD4+ T-cells from blood (left panel) and rectal tissue (right panel) compared to baseline. The maximum fold change in CA-US HIV RNA on study (solid column) and change at day 84 (open column) is shown for CD4+ T-cells from blood; and change at day 14 for rectal tissue is shown for each participant (upper panel) and the median (IQR) change for all participants (lower panel). The grey dashed line indicates 1-fold change. B) Time to reach maximum fold increase in CA-US HIV RNA for each participant. Grey shaded box represents the time on vorinostat. (C) Correlation between baseline CA-US HIV RNA and peak CA-US HIV RNA (left panel) and day 84 CA-US HIV RNA (right panel).

Figure 3. Effects of vorinostat on CA-US…

Figure 3. Effects of vorinostat on CA-US HIV RNA, HIV DNA and HIV RNA in…

Figure 3. Effects of vorinostat on CA-US HIV RNA, HIV DNA and HIV RNA in blood and tissue.
Changes in (A) CA-US HIV RNA (red), (B) plasma HIV RNA (green) and (C) HIV DNA (blue) is shown for each study participant (solid circle) and the median (IQR) at each time point in CD4+ T-cells from blood (left panel) and rectal tissue (right panel). Open circles represent data when at least one of the replicates were below the lower limit of detection (LLOD). The mean fold change in each parameter is also shown using a generalised estimating equation analysis (middle panel; boxes represent the median, 50th and 75th percentiles and whiskers represent the range). Grey shaded box represents the time on vorinostat. *p<0.01, **p<0.001.

Figure 4. Changes in virological and immunological…

Figure 4. Changes in virological and immunological parameters from one patient with viral rebound on…

Figure 4. Changes in virological and immunological parameters from one patient with viral rebound on study.
Changes in (A) CA-US HIV RNA (red), (B) plasma HIV RNA (green) and (C) CA-HIV DNA (blue) are shown as the mean± SD for replicates of CA-US HIV RNA and HIV DNA. Programmed death-1 (PD1) expression on CD4+ and CD8+ CD45RA- T-cells is shown. Grey shaded box represents the time on vorinostat. (D) Dot plot analysis of flow cytometry for co-expression of PD-1 and CD45RA on CD4+ (top panel) and CD8+ (lower panel) T-cells at baseline, after 7 days of vorinostat and at day 84 of follow up.

Figure 5. Vorinostat induced changes in the…

Figure 5. Vorinostat induced changes in the adaptive immune response.

(A) SEB-specific (upper panel) and…

Figure 5. Vorinostat induced changes in the adaptive immune response.
(A) SEB-specific (upper panel) and gag-specific (lower panel) CD8+ T-cells were quantified by intracellular cytokine staining and changes in (B) frequency of regulatory T-cells using flow cytometry. Significant changes between time points were determined using a Wilcoxon sign-rank test. P values

Figure 6. Vorinostat induced a transcriptional burst…

Figure 6. Vorinostat induced a transcriptional burst and chromatin perturbations that are recurrent with subsequent…

Figure 6. Vorinostat induced a transcriptional burst and chromatin perturbations that are recurrent with subsequent dosing.
(A) ANOVA (F-test) heatmap of top 50 differentially expressed genes (DEGs) from matched donor supervised analysis (n = 9) comparing gene expression two hours (2 h), eight hours (8 h) and one day following the initial dose of vorinostat. Gene expression was adjusted for baseline expression and represented as a gene-wise standardized expression (Z-score), with p-values2 fold change where red corresponds to up- and blue down-regulated genes at two hours versus baseline. Genes associated with viral transcriptional activity are annotated with colored arrowheads: red, BAF component SMARCB1 (SNF5) and CDK9; black, splicesome and nuclear export proteins; orange, mSIN3A HDAC subunits.

Figure 7. Changes in host genes were…

Figure 7. Changes in host genes were associated with an increase in CA-US HIV RNA…

Figure 7. Changes in host genes were associated with an increase in CA-US HIV RNA after vorinostat.
(A) Heatmap showing the fold change in gene expression using linear regression analysis between CA-US HIV RNA and DEG at two hours following the initial dose of vorinostat (n = 9). CA-US HIV RNA is plotted as a continuous variable (ranging from low to high – light green to dark green) and correlated with distinct gene expression profiles. The copy number of CA-US HIV RNA per million cells two hours following vorinostat for each participant is listed next to the patient identification code at the bottom of each column. The top 50 regression features (of a total of ∼2000 at nominal p-value2 fold change (FC); red squares correspond to upregulated gene expression and blue downregulated gene expression. Genes associated with MAPK signal transduction pathways are annotated with black arrows and cell cycle regulators annotated with green arrows. Genes associated with the ER stress response and apoptosis are annotated with red arrows.

Figure 8. Similar gene expression and pathway…

Figure 8. Similar gene expression and pathway activity after the 1st and 7th daily dose…

Figure 8. Similar gene expression and pathway activity after the 1st and 7th daily dose of vorinostat.
(A) ANOVA (F-test) heatmap of top 50 DEGs from matched donor supervised analysis (n = 5) comparing gene expression at 2 hours following the first dose (day 0+2 hours), day 7 (7d; prior to the seventh dose), and two hours following the seventh dose (day 7+2 hours). Gene Expression was adjusted for baseline expression and represented as a gene-wise standardized expression (Z-score), with p-value2 fold change. Genes up- or down-regulated similarly between the two time-points are indicated by black arrowheads whereas genes highlighted in red boxes are inversely or differentially regulated between time points.

Figure 9. Changes in gene expression over…

Figure 9. Changes in gene expression over the duration of study with most early changes…

Figure 9. Changes in gene expression over the duration of study with most early changes occurring in T-cells.
(A) ANOVA (F-test) heatmap of top 50 differentially expressed genes (DEGs) from matched donor supervised analysis (n = 9) comparing gene expression one, 14 and 84 days following the initial dose of vorinostat. Gene Expression was adjusted for baseline expression and represented as a gene-wise standardized expression (Z-score), with p-values2 fold change where red corresponds to up- and blue down-regulated genes respectively. (C) Pathway heatmap illustrates enrichment of gene expression in PBMC subsets at different timepoints compared to baseline. Red and blue represent up and down regulated expression of gene subsets respectively. (D) Checkerboard map of DEG at each timepoint compared to baseline. The cell subsets (modules) are plotted on the y-axis and gene members contributing to enrichment plotted on the x-axis. Scale represents log2 fold change. Red and blue boxes represent up and down gene regulation respectively. mDC = myeloid cells; pDC = plasmacytoid dendritic cells; NK = natural killer cells.
All figures (9)
Similar articles
Cited by
References
    1. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, et al. (1997) Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278: 1295–1300. - PubMed
    1. Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, et al. (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387: 183–188. - PubMed
    1. Smith MZ, Wightman F, Lewin SR (2012) HIV reservoirs and strategies for eradication. Curr HIV/AIDS Rep 9: 5–15. - PubMed
    1. Ylisastigui L, Archin NM, Lehrman G, Bosch RJ, Margolis DM (2004) Coaxing HIV-1 from resting CD4 T cells: histone deacetylase inhibition allows latent viral expression. AIDS 18: 1101–1108. - PubMed
    1. Shehu-Xhilaga M, Rhodes D, Wightman F, Liu HB, Solomon A, et al. (2009) The novel histone deacetylase inhibitors metacept-1 and metacept-3 potently increase HIV-1 transcription in latently infected cells. AIDS 23: 2047–2050. - PubMed
Show all 62 references
Publication types
MeSH terms
Associated data
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 2. Individual changes in CA-US HIV…
Figure 2. Individual changes in CA-US HIV RNA in blood and tissue.
A) Fold change in CA-US HIV RNA following vorinostat in CD4+ T-cells from blood (left panel) and rectal tissue (right panel) compared to baseline. The maximum fold change in CA-US HIV RNA on study (solid column) and change at day 84 (open column) is shown for CD4+ T-cells from blood; and change at day 14 for rectal tissue is shown for each participant (upper panel) and the median (IQR) change for all participants (lower panel). The grey dashed line indicates 1-fold change. B) Time to reach maximum fold increase in CA-US HIV RNA for each participant. Grey shaded box represents the time on vorinostat. (C) Correlation between baseline CA-US HIV RNA and peak CA-US HIV RNA (left panel) and day 84 CA-US HIV RNA (right panel).
Figure 3. Effects of vorinostat on CA-US…
Figure 3. Effects of vorinostat on CA-US HIV RNA, HIV DNA and HIV RNA in blood and tissue.
Changes in (A) CA-US HIV RNA (red), (B) plasma HIV RNA (green) and (C) HIV DNA (blue) is shown for each study participant (solid circle) and the median (IQR) at each time point in CD4+ T-cells from blood (left panel) and rectal tissue (right panel). Open circles represent data when at least one of the replicates were below the lower limit of detection (LLOD). The mean fold change in each parameter is also shown using a generalised estimating equation analysis (middle panel; boxes represent the median, 50th and 75th percentiles and whiskers represent the range). Grey shaded box represents the time on vorinostat. *p<0.01, **p<0.001.
Figure 4. Changes in virological and immunological…
Figure 4. Changes in virological and immunological parameters from one patient with viral rebound on study.
Changes in (A) CA-US HIV RNA (red), (B) plasma HIV RNA (green) and (C) CA-HIV DNA (blue) are shown as the mean± SD for replicates of CA-US HIV RNA and HIV DNA. Programmed death-1 (PD1) expression on CD4+ and CD8+ CD45RA- T-cells is shown. Grey shaded box represents the time on vorinostat. (D) Dot plot analysis of flow cytometry for co-expression of PD-1 and CD45RA on CD4+ (top panel) and CD8+ (lower panel) T-cells at baseline, after 7 days of vorinostat and at day 84 of follow up.
Figure 5. Vorinostat induced changes in the…
Figure 5. Vorinostat induced changes in the adaptive immune response.
(A) SEB-specific (upper panel) and gag-specific (lower panel) CD8+ T-cells were quantified by intracellular cytokine staining and changes in (B) frequency of regulatory T-cells using flow cytometry. Significant changes between time points were determined using a Wilcoxon sign-rank test. P values

Figure 6. Vorinostat induced a transcriptional burst…

Figure 6. Vorinostat induced a transcriptional burst and chromatin perturbations that are recurrent with subsequent…

Figure 6. Vorinostat induced a transcriptional burst and chromatin perturbations that are recurrent with subsequent dosing.
(A) ANOVA (F-test) heatmap of top 50 differentially expressed genes (DEGs) from matched donor supervised analysis (n = 9) comparing gene expression two hours (2 h), eight hours (8 h) and one day following the initial dose of vorinostat. Gene expression was adjusted for baseline expression and represented as a gene-wise standardized expression (Z-score), with p-values2 fold change where red corresponds to up- and blue down-regulated genes at two hours versus baseline. Genes associated with viral transcriptional activity are annotated with colored arrowheads: red, BAF component SMARCB1 (SNF5) and CDK9; black, splicesome and nuclear export proteins; orange, mSIN3A HDAC subunits.

Figure 7. Changes in host genes were…

Figure 7. Changes in host genes were associated with an increase in CA-US HIV RNA…

Figure 7. Changes in host genes were associated with an increase in CA-US HIV RNA after vorinostat.
(A) Heatmap showing the fold change in gene expression using linear regression analysis between CA-US HIV RNA and DEG at two hours following the initial dose of vorinostat (n = 9). CA-US HIV RNA is plotted as a continuous variable (ranging from low to high – light green to dark green) and correlated with distinct gene expression profiles. The copy number of CA-US HIV RNA per million cells two hours following vorinostat for each participant is listed next to the patient identification code at the bottom of each column. The top 50 regression features (of a total of ∼2000 at nominal p-value2 fold change (FC); red squares correspond to upregulated gene expression and blue downregulated gene expression. Genes associated with MAPK signal transduction pathways are annotated with black arrows and cell cycle regulators annotated with green arrows. Genes associated with the ER stress response and apoptosis are annotated with red arrows.

Figure 8. Similar gene expression and pathway…

Figure 8. Similar gene expression and pathway activity after the 1st and 7th daily dose…

Figure 8. Similar gene expression and pathway activity after the 1st and 7th daily dose of vorinostat.
(A) ANOVA (F-test) heatmap of top 50 DEGs from matched donor supervised analysis (n = 5) comparing gene expression at 2 hours following the first dose (day 0+2 hours), day 7 (7d; prior to the seventh dose), and two hours following the seventh dose (day 7+2 hours). Gene Expression was adjusted for baseline expression and represented as a gene-wise standardized expression (Z-score), with p-value2 fold change. Genes up- or down-regulated similarly between the two time-points are indicated by black arrowheads whereas genes highlighted in red boxes are inversely or differentially regulated between time points.

Figure 9. Changes in gene expression over…

Figure 9. Changes in gene expression over the duration of study with most early changes…

Figure 9. Changes in gene expression over the duration of study with most early changes occurring in T-cells.
(A) ANOVA (F-test) heatmap of top 50 differentially expressed genes (DEGs) from matched donor supervised analysis (n = 9) comparing gene expression one, 14 and 84 days following the initial dose of vorinostat. Gene Expression was adjusted for baseline expression and represented as a gene-wise standardized expression (Z-score), with p-values2 fold change where red corresponds to up- and blue down-regulated genes respectively. (C) Pathway heatmap illustrates enrichment of gene expression in PBMC subsets at different timepoints compared to baseline. Red and blue represent up and down regulated expression of gene subsets respectively. (D) Checkerboard map of DEG at each timepoint compared to baseline. The cell subsets (modules) are plotted on the y-axis and gene members contributing to enrichment plotted on the x-axis. Scale represents log2 fold change. Red and blue boxes represent up and down gene regulation respectively. mDC = myeloid cells; pDC = plasmacytoid dendritic cells; NK = natural killer cells.
All figures (9)
Figure 6. Vorinostat induced a transcriptional burst…
Figure 6. Vorinostat induced a transcriptional burst and chromatin perturbations that are recurrent with subsequent dosing.
(A) ANOVA (F-test) heatmap of top 50 differentially expressed genes (DEGs) from matched donor supervised analysis (n = 9) comparing gene expression two hours (2 h), eight hours (8 h) and one day following the initial dose of vorinostat. Gene expression was adjusted for baseline expression and represented as a gene-wise standardized expression (Z-score), with p-values2 fold change where red corresponds to up- and blue down-regulated genes at two hours versus baseline. Genes associated with viral transcriptional activity are annotated with colored arrowheads: red, BAF component SMARCB1 (SNF5) and CDK9; black, splicesome and nuclear export proteins; orange, mSIN3A HDAC subunits.
Figure 7. Changes in host genes were…
Figure 7. Changes in host genes were associated with an increase in CA-US HIV RNA after vorinostat.
(A) Heatmap showing the fold change in gene expression using linear regression analysis between CA-US HIV RNA and DEG at two hours following the initial dose of vorinostat (n = 9). CA-US HIV RNA is plotted as a continuous variable (ranging from low to high – light green to dark green) and correlated with distinct gene expression profiles. The copy number of CA-US HIV RNA per million cells two hours following vorinostat for each participant is listed next to the patient identification code at the bottom of each column. The top 50 regression features (of a total of ∼2000 at nominal p-value2 fold change (FC); red squares correspond to upregulated gene expression and blue downregulated gene expression. Genes associated with MAPK signal transduction pathways are annotated with black arrows and cell cycle regulators annotated with green arrows. Genes associated with the ER stress response and apoptosis are annotated with red arrows.
Figure 8. Similar gene expression and pathway…
Figure 8. Similar gene expression and pathway activity after the 1st and 7th daily dose of vorinostat.
(A) ANOVA (F-test) heatmap of top 50 DEGs from matched donor supervised analysis (n = 5) comparing gene expression at 2 hours following the first dose (day 0+2 hours), day 7 (7d; prior to the seventh dose), and two hours following the seventh dose (day 7+2 hours). Gene Expression was adjusted for baseline expression and represented as a gene-wise standardized expression (Z-score), with p-value2 fold change. Genes up- or down-regulated similarly between the two time-points are indicated by black arrowheads whereas genes highlighted in red boxes are inversely or differentially regulated between time points.
Figure 9. Changes in gene expression over…
Figure 9. Changes in gene expression over the duration of study with most early changes occurring in T-cells.
(A) ANOVA (F-test) heatmap of top 50 differentially expressed genes (DEGs) from matched donor supervised analysis (n = 9) comparing gene expression one, 14 and 84 days following the initial dose of vorinostat. Gene Expression was adjusted for baseline expression and represented as a gene-wise standardized expression (Z-score), with p-values2 fold change where red corresponds to up- and blue down-regulated genes respectively. (C) Pathway heatmap illustrates enrichment of gene expression in PBMC subsets at different timepoints compared to baseline. Red and blue represent up and down regulated expression of gene subsets respectively. (D) Checkerboard map of DEG at each timepoint compared to baseline. The cell subsets (modules) are plotted on the y-axis and gene members contributing to enrichment plotted on the x-axis. Scale represents log2 fold change. Red and blue boxes represent up and down gene regulation respectively. mDC = myeloid cells; pDC = plasmacytoid dendritic cells; NK = natural killer cells.

References

    1. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, et al. (1997) Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278: 1295–1300.
    1. Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, et al. (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387: 183–188.
    1. Smith MZ, Wightman F, Lewin SR (2012) HIV reservoirs and strategies for eradication. Curr HIV/AIDS Rep 9: 5–15.
    1. Ylisastigui L, Archin NM, Lehrman G, Bosch RJ, Margolis DM (2004) Coaxing HIV-1 from resting CD4 T cells: histone deacetylase inhibition allows latent viral expression. AIDS 18: 1101–1108.
    1. Shehu-Xhilaga M, Rhodes D, Wightman F, Liu HB, Solomon A, et al. (2009) The novel histone deacetylase inhibitors metacept-1 and metacept-3 potently increase HIV-1 transcription in latently infected cells. AIDS 23: 2047–2050.
    1. Savarino A, Mai A, Norelli S, El Daker S, Valente S, et al. (2009) “Shock and kill” effects of class I-selective histone deacetylase inhibitors in combination with the glutathione synthesis inhibitor buthionine sulfoximine in cell line models for HIV-1 quiescence. Retrovirology 6: 52.
    1. Keedy KS, Archin NM, Gates AT, Espeseth A, Hazuda DJ, et al. (2009) A limited group of class I histone deacetylases acts to repress human immunodeficiency virus type 1 expression. J Virol 83: 4749–4756.
    1. Archin NM, Keedy KS, Espeseth A, Dang H, Hazuda DJ, et al. (2009) Expression of latent human immunodeficiency type 1 is induced by novel and selective histone deacetylase inhibitors. AIDS 23: 1799–1806.
    1. Cillo AR, Sobolewski MD, Bosch RJ, Fyne E, Piatak M Jr, et al. (2014) Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A 111: 7078–7083.
    1. Spina CA, Anderson J, Archin NM, Bosque A, Chan J, et al. (2013) An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog 9: e1003834.
    1. Wei DG, Chiang V, Fyne E, Balakrishnan M, Barnes T, et al. (2014) Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing. PLoS Pathog 10: e1004071.
    1. Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF (2014) New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med 20: 425–429.
    1. Prince HM, Bishton MJ, Harrison SJ (2009) Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 15: 3958–3969.
    1. Rasmussen TA, Schmeltz Sogaard O, Brinkmann C, Wightman F, Lewin SR, et al. (2013) Comparison of HDAC inhibitors in clinical development: Effect on HIV production in latently infected cells and T-cell activation. Hum Vaccin Immunother 9: 993–1001.
    1. Bouchat S, Gatot JS, Kabeya K, Cardona C, Colin L, et al. (2012) Histone methyltransferase inhibitors induce HIV-1 recovery in resting CD4(+) T cells from HIV-1-infected HAART-treated patients. AIDS 26: 1473–1482.
    1. Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, et al. (2012) Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487: 482–485.
    1. Blazkova J, Murray D, Justement JS, Funk EK, Nelson AK, et al. (2012) Paucity of HIV DNA methylation in latently infected, resting CD4+ T cells from infected individuals receiving antiretroviral therapy. J Virol 86: 5390–5392.
    1. Søgaard O, Graversen M, Leth S, Brinkmann C, Kjær A-S, et al. (2014) The HDAC inhibitor romidepsin is safe and effectively reverses HIV-1 latency in vivo as measured by standard clinical assays. Abstract TUAA0106LB. 20th International AIDS Conference. Melbourne
    1. Archin NM, Bateson R, Tripathy MK, Crooks AM, Yang KH, et al. (2014) HIV-1 Expression Within Resting CD4+ T Cells After Multiple Doses of Vorinostat. J Infect Dis 210: 728–35.
    1. Palmer S, Maldarelli F, Wiegand A, Bernstein B, Hanna GJ, et al. (2008) Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A 105: 3879–3884.
    1. Bhaskara S, Jacques V, Rusche JR, Olson EN, Cairns BR, et al. (2013) Histone deacetylases 1 and 2 maintain S-phase chromatin and DNA replication fork progression. Epigenetics Chromatin 6: 27.
    1. Smith S, Fox J, Mejia M, Ruangpradit W, Saberi A, et al. (2014) Histone deacetylase inhibitors selectively target homology dependent DNA repair defective cells and elevate non-homologous endjoining activity. PLoS One 9: e87203.
    1. Darwish H, Cho JM, Loignon M, Alaoui-Jamali MA (2007) Overexpression of SERTAD3, a putative oncogene located within the 19q13 amplicon, induces E2F activity and promotes tumor growth. Oncogene 26: 4319–4328.
    1. Ali M, Hom RA, Blakeslee W, Ikenouye L, Kutateladze TG (2014) Diverse functions of PHD fingers of the MLL/KMT2 subfamily. Biochim Biophys Acta 1843: 366–371.
    1. Musselman CA, Lalonde ME, Cote J, Kutateladze TG (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19: 1218–1227.
    1. Rafati H, Parra M, Hakre S, Moshkin Y, Verdin E, et al. (2011) Repressive LTR nucleosome positioning by the BAF complex is required for HIV latency. PLoS Biol 9: e1001206.
    1. Van Duyne R, Guendel I, Narayanan A, Gregg E, Shafagati N, et al. (2011) Varying Modulation of HIV-1 LTR Activity by BAF Complexes. Journal of Molecular Biology 411: 581–596.
    1. Tolstorukov MY, Sansam CG, Lu P, Koellhoffer EC, Helming KC, et al. (2013) Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. Proc Natl Acad Sci U S A 110: 10165–10170.
    1. Hakre S, Chavez L, Shirakawa K, Verdin E (2012) HIV latency: experimental systems and molecular models. FEMS Microbiol Rev 36: 706–716.
    1. Maroun M, Delelis O, Coadou G, Bader T, Segeral E, et al. (2006) Inhibition of early steps of HIV-1 replication by SNF5/Ini1. J Biol Chem 281: 22736–22743.
    1. Bartholomeeusen K, Fujinaga K, Xiang Y, Peterlin BM (2013) Histone deacetylase inhibitors (HDACis) that release the positive transcription elongation factor b (P-TEFb) from its inhibitory complex also activate HIV transcription. J Biol Chem 288: 14400–14407.
    1. Lu H, Li Z, Xue Y, Schulze-Gahmen U, Johnson JR, et al. (2014) AFF1 is a ubiquitous P-TEFb partner to enable Tat extraction of P-TEFb from 7SK snRNP and formation of SECs for HIV transactivation. Proc Natl Acad Sci U S A 111: E15–24.
    1. Litvak V, Ramsey SA, Rust AG, Zak DE, Kennedy KA, et al. (2009) Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat Immunol 10: 437–443.
    1. Lassen KG, Ramyar KX, Bailey JR, Zhou Y, Siliciano RF (2006) Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells. PLoS Pathog 2: e68.
    1. Huang J, Wang F, Argyris E, Chen K, Liang Z, et al. (2007) Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 13: 1241–1247.
    1. Saleh S, Wightman F, Ramanayake S, Alexander M, Kumar N, et al. (2011) Expression and reactivation of HIV in a chemokine induced model of HIV latency in primary resting CD4+ T cells. Retrovirology 8: 80.
    1. Lassen KG, Bailey JR, Siliciano RF (2004) Analysis of human immunodeficiency virus type 1 transcriptional elongation in resting CD4+ T cells in vivo. J Virol 78: 9105–9114.
    1. Tao R, de Zoeten EF, Ozkaynak E, Chen C, Wang L, et al. (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13: 1299–1307.
    1. Li N, Zhao D, Kirschbaum M, Zhang C, Lin CL, et al. (2008) HDAC inhibitor reduces cytokine storm and facilitates induction of chimerism that reverses lupus in anti-CD3 conditioning regimen. Proc Natl Acad Sci U S A 105: 4796–4801.
    1. Gojo I, Jiemjit A, Trepel JB, Sparreboom A, Figg WD, et al. (2007) Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 109: 2781–2790.
    1. Bose P, Dai Y, Grant S (2014) Histone deacetylase inhibitor (HDACI) mechanisms of action: Emerging insights. Pharmacol Ther 143: 323–336.
    1. Reuse S, Calao M, Kabeya K, Guiguen A, Gatot JS, et al. (2009) Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLoS One 4: e6093.
    1. Boehm D, Calvanese V, Dar RD, Xing S, Schroeder S, et al. (2013) BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle 12: 452–462.
    1. Rasmussen T (2014) the CLEAR study group (2014) Panobinostat Induces HIV Transcription and Plasma Viremia in HIV Patients on Suppressive cART. Conference on Retroviruses and Opportunistic Infections. Boston
    1. Wightman F, Lu HK, Solomon AE, Saleh S, Harman AN, et al. (2013) Entinostat is a histone deacetylase inhibitor selective for class 1 histone deacetylases and activates HIV production from latently infected primary T cells. AIDS 27: 2853–62.
    1. Lewin SR, Vesanen M, Kostrikis L, Hurley A, Duran M, et al. (1999) Use of real-time PCR and molecular beacons to detect virus replication in human immunodeficiency virus type 1-infected individuals on prolonged effective antiretroviral therapy. Journal of Virology 73: 6099–6103.
    1. Stoltzfus CM, Madsen JM (2006) Role of viral splicing elements and cellular RNA binding proteins in regulation of HIV-1 alternative RNA splicing. Curr HIV Res 4: 43–55.
    1. Pasternak AO, Jurriaans S, Bakker M, Prins JM, Berkhout B, et al. (2009) Cellular levels of HIV unspliced RNA from patients on combination antiretroviral therapy with undetectable plasma viremia predict the therapy outcome. PLoS ONE 4: e8490.
    1. Lewin SR, Murray JM, Solomon A, Wightman F, Cameron PU, et al. (2008) Virologic determinants of success after structured treatment interruptions of antiretrovirals in acute HIV-1 infection. J Acquir Immune Defic Syndr 47: 140–147.
    1. Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, et al. (2009) HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 15: 893–900.
    1. Yukl SA, Gianella S, Sinclair E, Epling L, Li Q, et al. (2010) Differences in HIV burden and immune activation within the gut of HIV-positive patients receiving suppressive antiretroviral therapy. J Infect Dis 202: 1553–1561.
    1. Pasternak AO, Adema KW, Bakker M, Jurriaans S, Berkhout B, et al. (2008) Highly sensitive methods based on seminested real-time reverse transcription-PCR for quantitation of human immunodeficiency virus type 1 unspliced and multiply spliced RNA and proviral DNA. J Clin Microbiol 46: 2206–2211.
    1. Hu Y, Smyth GK (2009) ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 347: 70–78.
    1. Hatano H, Jain V, Hunt PW, Lee TH, Sinclair E, et al. (2013) Cell-based measures of viral persistence are associated with immune activation and programmed cell death protein 1 (PD-1)-expressing CD4+ T cells. J Infect Dis 208: 50–56.
    1. The R Development Core Team (2010) R: A Language and Environment for Statistical Computing: R Foundation for Statistical Computing.
    1. Smyth GK (2005) Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor. New York: Springer.
    1. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.
    1. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Royal Statist Soc Series B (Methodological) 57.
    1. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.
    1. Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S, et al. (2011) Systems biology of vaccination for seasonal influenza in humans. Nat Immunol 12: 786–795.
    1. Sutradhar B, Rao R (2001) On Marginal Quasi-Likelihood Inference in Generalized Linear Mixed Models. Journal of Multivariate Analysis 76: 1–34.
    1. Feddag M, Grama I, Mesbah M (2003) Generalised Estimating Equations (GEE) for Mixed Logistic Models. Communications in Statistics: Theory and Methods 32: 851–874.

Source: PubMed

3
Suscribir