Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing

Datsen George Wei, Vicki Chiang, Elizabeth Fyne, Mini Balakrishnan, Tiffany Barnes, Michael Graupe, Joseph Hesselgesser, Alivelu Irrinki, Jeffrey P Murry, George Stepan, Kirsten M Stray, Angela Tsai, Helen Yu, Jonathan Spindler, Mary Kearney, Celsa A Spina, Deborah McMahon, Jacob Lalezari, Derek Sloan, John Mellors, Romas Geleziunas, Tomas Cihlar, Datsen George Wei, Vicki Chiang, Elizabeth Fyne, Mini Balakrishnan, Tiffany Barnes, Michael Graupe, Joseph Hesselgesser, Alivelu Irrinki, Jeffrey P Murry, George Stepan, Kirsten M Stray, Angela Tsai, Helen Yu, Jonathan Spindler, Mary Kearney, Celsa A Spina, Deborah McMahon, Jacob Lalezari, Derek Sloan, John Mellors, Romas Geleziunas, Tomas Cihlar

Abstract

Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART.

Conflict of interest statement

DGW, VC, MB, TB, MG, JH, AI, JPM, GS, KMS, AT, HY, DS, RG, and TC are employees of Gilead Sciences, Inc. JM is a scientific advisor of Gilead Sciences, Inc. JL is a director of Quest Clinical Research that provided clinical specimens. EF, JS, MK, CAS, and DM have no competing interests. Part of the study was funded by Gilead Sciences, Inc. Employees of the company were involved in study design, data collection and analysis, and writing the manuscript. However, none of the therapeutics characterized in this study are products of Gilead Sciences, and studies were designed, executed, and objectively interpreted purely with a purpose to advance basic research in the field of HIV latency and cure. This does not alter our adherence to all PLOS Pathogens policies on sharing data and materials.

Figures

Figure 1. In vitro activation of HIV…
Figure 1. In vitro activation of HIV expression by HDAC inhibitors in an in vitro latency model.
Primary CD4 T cells latently infected in vitro with reporter HIV were established as previously described , with additional minor modifications described in Materials and Methods. The infected cells were incubated in the presence of the indicated HDACi. (A) A dose response of HIV activation by HDACi was determined by the quantification of luciferase reporter activity after a 48-hour treatment. Results are mean ± SD from a representative experiment performed in quadruplicate. (B) Induction of p24 expression by RMD and VOR. Flow cytometry analysis of cells from a representative donor is shown with gating on the live cell population. Anti-CD3/CD28 antibodies conjugated to beads were used as a positive control. (C) Time course of the induction of p24 expression by RMD. Cells isolated from 2 independent donors were treated with 40 nM RMD or anti-CD3/CD28 antibodies for 24 to 72 hours in the presence of antiretrovirals. Percentage of p24-positive cells was determined by flow cytometry with gating on live cell population.
Figure 2. Ex vivo activation of HIV…
Figure 2. Ex vivo activation of HIV expression by RMD and VOR.
CD4 T cells were isolated from virally suppressed HIV-infected patients and pulse-treated with RMD and VOR for 6 and 24 hours, respectively. Cell-associated total RNA was extracted, HIV RNA levels were quantified at the indicated time points, and fold increase in the cell-associated HIV RNA was determined relative to corresponding vehicle-treated control for each individual time point. The fold change for each donor and condition is based on mean number of HIV copies from 4 to 5 independent measurements. Red dashed line represents the mean fold HIV induction across all tested donors. Symbols # (pA) Memory CD4 T cells were purified as the CD4(+)CD45RA(−) subset. (B) Resting CD4+ T cells were purified as the CD4(+)HLA-DR(−)CD69(−)CD25(−) subset.
Figure 3. Induction of extracellular viral RNA…
Figure 3. Induction of extracellular viral RNA release from CD4 T cells treated with RMD and VOR.
Memory or resting CD4 T cells isolated from HIV-infected patients on suppressive cART were treated with RMD or VOR, and viral RNA was quantified in cell culture supernatants 6 days after the addition of drugs. Results are depicted as fold increase in viral RNA relative to control cultures. Each symbol represents one HIV subject. Solid circles, p0.05 compared to vehicle-treated controls from the same donors; solid squares, p value not calculated. Red lines represent the mean fold HIV induction across all analyzed donors. Symbols # and * denote a statistically significant difference (pA) Memory CD4 T cells were treated with RMD and VOR for 4 and 24 hours, respectively. (B) Memory CD4 T cells were treated continuously for 6 days. (C) Resting CD4 T cells were treated continuously for 6 days.
Figure 4. Induction of HIV expression and…
Figure 4. Induction of HIV expression and inhibition of cell-associated HDAC activity by HDACi.
Resting CD4 T cells isolated from cART-suppressed HIV-infected patients were pulse-treated with RMD (4 hours), VOR (24 hours), and PNB (24 hours). Viral RNA was determined 48 hours after the initiation of the treatment. Data represent mean ± SD from two independent donors. (A) Cell-associated total RNA was extracted at the indicated time points, and HIV RNA levels were quantified. Data for each individual donor and condition including results of the statistical analysis are summarized in Supplementary Table S4. (B) Total class I and II HDAC enzyme activity was measured in total cell extracts of treated cells relative to vehicle-treated cells (representing 100% activity) using a model substrate described in Materials and Methods.
Figure 5. RMD activates intracellular HIV expression…
Figure 5. RMD activates intracellular HIV expression at concentrations below the levels achieved by clinical dosing.
Resting CD4 T cells were isolated from 3 cART-suppressed HIV-infected patients and pulse-treated with RMD for 4 hours with the indicated concentrations. Cell-associated HIV RNA levels were analyzed at each time point following the treatment initiation (t = 0 hour), and fold induction was determined relative to a background signal in vehicle-treated controls. Predicted i.v. dose and percentage of clinical exposure were calculated for each RMD concentration tested relative to the clinically approved dose of 14 mg/m2; calculations were performed based on the free fraction of drug in human plasma and cell culture media. Data represent mean ± SD from at least 3 HIV-infected donors. Data for each individual donor and condition including results of the statistical analysis are summarized in Supplementary Table S4.
Figure 6. RMD does not induce global…
Figure 6. RMD does not induce global activation of immune cell subsets.
PBMCs isolated from four HIV-infected patients on suppressive cART were treated with a 4-hour pulse of RMD or continuously with vehicle control (DMSO), VOR, or PMA+ionomycin and stained for surface markers 48 hours after the treatment initiation. Fractions of CD69−, CD25−, and HLA-DR-positive cells in subsets of CD4+ T cells, CD8+ T cells, and CD19+ B cells were analyzed by flow cytometry as described in Materials and Methods. Each symbol represents one donor.
Figure 7. Ex vivo response to RMD…
Figure 7. Ex vivo response to RMD in multiple longitudinal samples from the same donors.
Resting CD4 T cells isolated from 2 cART-suppressed HIV-infected patients were treated continuously with RMD or with anti-CD3/CD28 antibodies (AC, activation control) for 7 days. HIV RNA in cell culture supernatants was quantified by COBAS on day 7. Data for a high-responding (A) and a low-responding donor (B) to RMD is shown; each donor was tested at 3 different time points separated by at least 2 weeks (Exp 1–3). VC/NDC, vehicle control/no-drug control. Asterisk (*) indicates no value due to COBAS analysis failure. Dashed lines indicate the limit of HIV quantification by COBAS (20 copies/ml). Data for each individual donor and condition including results of the statistical analysis are summarized in Supplementary Table S4.
Figure 8. Phylogenetic analysis of HIV sequences…
Figure 8. Phylogenetic analysis of HIV sequences expressed ex vivo following the latency reversal.
Resting CD4 T cells isolated from a cART-suppressed HIV-infected patient (high-responding patient from Fig. 7) were treated continuously with RMD or activation control (anti-CD3/CD28 antibodies). Single-genome sequencing was used to analyze patient HIV proviral DNA and plasma RNA at the initiation of treatment (day 0), together with the ex vivo induced HIV RNA in cell culture supernatants at the end of treatment (day 7). Total of 43 sequences were recovered for proviral DNA. Eighty-eight, 11, and 4 sequences of HIV RNA were collected in culture supernatants following the treatment with activation control, 7.5 nM RMD, and 2.5 nM RMD, respectively. Grey arrows indicate examples of full concordance between the sequence of proviral DNA and viral RNA induced either by RMD or activation control. No HIV RNA sequences were recovered in supernatants from cultures treated with control vehicle or 2 µM SAHA. Identified HIV DNA and RNA sequences were aligned and the phylogenetic tree was constructed using Clustal W and MEAG5.

References

    1. DeJesus E, Rockstroh JK, Henry K, Molina JM, Gathe J, et al. (2012) Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir disoproxil fumarate versus ritonavir-boosted atazanavir plus co-formulated emtricitabine and tenofovir disoproxil fumarate for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3, non-inferiority trial. Lancet 379: 2429–2438.
    1. Raffi F, Rachlis A, Stellbrink HJ, Hardy WD, Torti C, et al. (2013) Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study. Lancet 381: 735–743.
    1. Palmer S, Maldarelli F, Wiegand A, Bernstein B, Hanna GJ, et al. (2008) Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A 105: 3879–3884.
    1. Chun TW, Davey RT Jr, Ostrowski M, Shawn Justement J, Engel D, et al. (2000) Relationship between pre-existing viral reservoirs and the re-emergence of plasma viremia after discontinuation of highly active anti-retroviral therapy. Nat Med 6: 757–761.
    1. Papasavvas E, Kostman JR, Mounzer K, Grant RM, Gross R, et al. (2004) Randomized, controlled trial of therapy interruption in chronic HIV-1 infection. PLoS Med 1: e64.
    1. Siliciano JD, Siliciano RF (2006) The latent reservoir for HIV-1 in resting CD4+ T cells: a barrier to cure. Curr Opin HIV AIDS 1: 121–128.
    1. Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, et al. (2003) Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 9: 727–728.
    1. Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, et al. (2009) HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 15: 893–900.
    1. Eisele E, Siliciano RF (2012) Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 37: 377–388.
    1. Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA, et al. (2013) Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLoS Pathog 9: e1003174.
    1. Siliciano JD, Siliciano RF (2013) HIV-1 eradication strategies: design and assessment. Curr Opin HIV AIDS 8: 318–325.
    1. Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, et al. (2009) The challenge of finding a cure for HIV infection. Science 323: 1304–1307.
    1. Antiretroviral Therapy Cohort C (2008) Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet 372: 293–299.
    1. Smit C, Geskus R, Walker S, Sabin C, Coutinho R, et al. (2006) Effective therapy has altered the spectrum of cause-specific mortality following HIV seroconversion. AIDS 20: 741–749.
    1. Friis-Moller N, Sabin CA, Weber R, d'Arminio Monforte A, El-Sadr WM, et al. (2003) Combination antiretroviral therapy and the risk of myocardial infarction. N Engl J Med 349: 1993–2003.
    1. Coiras M, Lopez-Huertas MR, Perez-Olmeda M, Alcami J (2009) Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs. Nat Rev Microbiol 7: 798–812.
    1. Colin L, Van Lint C (2009) Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 6: 111.
    1. Williams SA, Chen LF, Kwon H, Ruiz-Jarabo CM, Verdin E, et al. (2006) NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 25: 139–149.
    1. Jiang G, Espeseth A, Hazuda DJ, Margolis DM (2007) c-Myc and Sp1 contribute to proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus type 1 promoter. J Virol 81: 10914–10923.
    1. Wightman F, Ellenberg P, Churchill M, Lewin SR (2012) HDAC inhibitors in HIV. Immunology and Cell Biology 90: 47–54.
    1. Archin NM, Espeseth A, Parker D, Cheema M, Hazuda D, et al. (2009) Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid. AIDS Research and Human Retroviruses 25: 207–212.
    1. Edelstein LC, Micheva-Viteva S, Phelan BD, Dougherty JP (2009) Short communication: activation of latent HIV type 1 gene expression by suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor approved for use to treat cutaneous T cell lymphoma. AIDS Res Hum Retroviruses 25: 883–887.
    1. Matalon S, Rasmussen TA, Dinarello CA (2011) Histone deacetylase inhibitors for purging HIV-1 from the latent reservoir. Mol Med 17: 466–472.
    1. Beliakova-Bethell N, Zhang JX, Singhania A, Lee V, Terry VH, et al. (2013) Suberoylanilide hydroxamic acid induces limited changes in the transcriptome of primary CD4(+) T cells. AIDS 27: 29–37.
    1. Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, et al. (2012) Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487: 482–485.
    1. Rasmussen TA, Schmeltz Sogaard O, Brinkmann C, Wightman F, Lewin SR, et al. (2013) Comparison of HDAC inhibitors in clinical development: Effect on HIV production in latently infected cells and T-cell activation. Hum Vaccin Immunother 9 993–1001 doi:
    1. Ueda H, Nakajima H, Hori Y, Fujita T, Nishimura M, et al. (1994) FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J Antibiot (Tokyo) 47: 301–310.
    1. Bertino EM, Otterson GA (2011) Romidepsin: a novel histone deacetylase inhibitor for cancer. Expert Opin Investig Drugs 20: 1151–1158.
    1. Bosque A, Planelles V (2009) Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood 113: 58–65.
    1. Bosque A, Planelles V (2011) Studies of HIV-1 latency in an ex vivo model that uses primary central memory T cells. Methods 53: 54–61.
    1. Piekarz RL, Frye R, Prince HM, Kirschbaum MH, Zain J, et al. (2011) Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood 117: 5827–5834.
    1. Sandor V, Bakke S, Robey RW, Kang MH, Blagosklonny MV, et al. (2002) Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res 8: 718–728.
    1. Istodax (romidepsin) for injection. US Prescribing Information. Celgene Corporation. Summit, NJ. Revised June 2013.
    1. Palmer S, Kearney M, Maldarelli F, Halvas EK, Bixby CJ, et al. (2005) Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. J Clin Microbiol 43: 406–413.
    1. Kearney M, Palmer S, Maldarelli F, Shao W, Polis MA, et al. (2008) Frequent polymorphism at drug resistance sites in HIV-1 protease and reverse transcriptase. AIDS 22: 497–501.
    1. Kearney M, Spindler J, Shao W, Maldarelli F, Palmer S, et al. (2011) Genetic diversity of simian immunodeficiency virus encoding HIV-1 reverse transcriptase persists in macaques despite antiretroviral therapy. J Virol 85: 1067–1076.
    1. Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, et al. (2013) Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155: 540–551.
    1. Furumai R, Matsuyama A, Kobashi N, Lee KH, Nishiyama M, et al. (2002) FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res 62: 4916–4921.
    1. Elliott J, Solomon A, Wightman F, Smith M, Palmer S, et al... (2013) The safety and effect of multiple foses of vorinostat on HIV transcription in HIV+ patients receiving cART. [Abstract 50LB]. In: 20th Conference on Retroviruses and Opportunistic Infections 3–6 March 2013. Atlanta, Georgia, United States of America.
    1. Rasmussen T, CLEAR study group (2014). Panobinostat induces HIV transcription and plasma viremia in HIV patients on suppressive cART. [Abstract 438LB]. In : Conference on Retroviruses and Opportunistic Infections 3–6 March 2014. Boston, Massachusetts, United States of America.
    1. Burnett JC, Lim KI, Calafi A, Rossi JJ, Schaffer DV, et al. (2010) Combinatorial latency reactivation for HIV-1 subtypes and variants. J Virol 84: 5958–5974.
    1. Friedman J, Cho WK, Chu CK, Keedy KS, Archin NM, et al. (2011) Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2. Journal of Virology 85: 9078–9089.
    1. Bouchat S, Gatot JS, Kabeya K, Cardona C, Colin L, et al. (2012) Histone methyltransferase inhibitors induce HIV-1 recovery in resting CD4(+) T cells from HIV-1-infected HAART-treated patients. AIDS 26: 1473–1482.
    1. Xing S, Bullen CK, Shroff NS, Shan L, Yang HC, et al. (2011) Disulfiram reactivates latent HIV-1 in a Bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation. J Virol 85: 6060–6064.
    1. Xing S, Bhat S, Shroff NS, Zhang H, Lopez JA, et al. (2012) Novel structurally related compounds reactivate latent HIV-1 in a bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation. J Antimicrob Chemother 67: 398–403.
    1. Shan L, Deng K, Shroff NS, Durand CM, Rabi SA, et al. (2012) Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 36: 491–501.
    1. Badley AD, Sainski A, Wightman F, Lewin SR (2013) Altering cell death pathways as an approach to cure HIV infection. Cell Death Dis 4: e718.
    1. Smalls-Mantey A, Doria-Rose N, Klein R, Patamawenu A, Migueles SA, et al. (2012) Antibody-dependent cellular cytotoxicity against primary HIV-infected CD4+ T cells is directly associated with the magnitude of surface IgG binding. J Virol 86: 8672–8680.
    1. Bhutani D, Vaishampayan UN (2013) Monoclonal antibodies in oncology therapeutics: present and future indications. Expert Opin Biol Ther 13: 269–282.
    1. Iglesias-Ussel M, Vandergeeten C, Marchionni L, Chomont N, Romerio F (2013) High levels of CD2 expression identify HIV-1 latently infected resting memory CD4+ T cells in virally suppressed subjects. J Virol 87: 9148–9158.
    1. Sweet MJ, Shakespear MR, Kamal NA, Fairlie DP (2012) HDAC inhibitors: modulating leukocyte differentiation, survival, proliferation and inflammation. Immunol Cell Biol 90: 14–22.
    1. Licciardi PV, Ververis K, Tang ML, El-Osta A, Karagiannis TC (2013) Immunomodulatory effects of histone deacetylase inhibitors. Curr Mol Med 13: 640–647.
    1. Roger T, Lugrin J, Le Roy D, Goy G, Mombelli M, et al. (2011) Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection. Blood 117: 1205–1217.
    1. Doherty R, O'Farrelly C, Meade KG (2013) Epigenetic regulation of the innate immune response to LPS in bovine peripheral blood mononuclear cells (PBMC). Vet Immunol Immunopathol 154: 102–110.
    1. Hara N, Alkanani AK, Dinarello CA, Zipris D (2014) Histone deacetylase inhibitor suppresses virus-induced proinflammatory responses and type 1 diabetes. J Mol Med (Berl) 92: 93–102.
    1. Alvarez-Breckenridge CA, Yu J, Price R, Wei M, Wang Y, et al. (2012) The histone deacetylase inhibitor valproic acid lessens NK cell action against oncolytic virus-infected glioblastoma cells by inhibition of STAT5/T-BET signaling and generation of gamma interferon. J Virol 86: 4566–4577.
    1. Mombelli M, Lugrin J, Rubino I, Chanson AL, Giddey M, et al. (2011) Histone deacetylase inhibitors impair antibacterial defenses of macrophages. J Infect Dis 204: 1367–1374.
    1. Kelly-Sell MJ, Kim YH, Straus S, Benoit B, Harrison C, et al. (2012) The histone deacetylase inhibitor, romidepsin, suppresses cellular immune functions of cutaneous T-cell lymphoma patients. Am J Hematol 87: 354–360.
    1. Messi M, Giacchetto I, Nagata K, Lanzavecchia A, Natoli G, et al. (2003) Memory and flexibility of cytokine gene expression as separable properties of human T(H)1 and T(H)2 lymphocytes. Nat Immunol 4: 78–86.

Source: PubMed

3
Suscribir