Comparison of Nanostring nCounter® Data on FFPE Colon Cancer Samples and Affymetrix Microarray Data on Matched Frozen Tissues

Xi Chen, Natasha G Deane, Keeli B Lewis, Jiang Li, Jing Zhu, M Kay Washington, R Daniel Beauchamp, Xi Chen, Natasha G Deane, Keeli B Lewis, Jiang Li, Jing Zhu, M Kay Washington, R Daniel Beauchamp

Abstract

The prognosis of colorectal cancer (CRC) stage II and III patients remains a challenge due to the difficulties of finding robust biomarkers suitable for testing clinical samples. The majority of published gene signatures of CRC have been generated on fresh frozen colorectal tissues. Because collection of frozen tissue is not practical for routine surgical pathology practice, a clinical test that improves prognostic capabilities beyond standard pathological staging of colon cancer will need to be designed for formalin-fixed paraffin-embedded (FFPE) tissues. The NanoString nCounter® platform is a gene expression analysis tool developed for use with FFPE-derived samples. We designed a custom nCounter® codeset based on elements from multiple published fresh frozen tissue microarray-based prognostic gene signatures for colon cancer, and we used this platform to systematically compare gene expression data from FFPE with matched microarray array data from frozen tissues. Our results show moderate correlation of gene expression between two platforms and discovery of a small subset of genes as candidate biomarkers for colon cancer prognosis that are detectable and quantifiable in FFPE tissue sections.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Histograms for nCounter and microarray.
Fig 1. Histograms for nCounter and microarray.
The frequency of gene probes (414 elements total) is graphed against median normalized expression values across the x-axis.
Fig 2. The heatmap of pairwise correlations…
Fig 2. The heatmap of pairwise correlations between individual matched FFPE and fresh frozen samples.
X-axis represents the fresh frozen samples and y-axis represents matched FFPE samples.
Fig 3. The histogram of gene-wise correlations…
Fig 3. The histogram of gene-wise correlations between FFPE and fresh frozen samples.
X-axis represents Pearson correlation of each of 414 genes between fresh frozen samples and FFPE samples and y-axis represents the frequency.
Fig 4. Scatterplot of log2 fold change.
Fig 4. Scatterplot of log2 fold change.
Log2 fold change in tumor to normal signal intensity for 414 genes comparing results from nCounter (x-axis) and microarray (y-axis). The red, green and blue dots represent 76, 90 and 248 genes significantly differentially expressed in both, either, and neither platforms respectively.
Fig 5. Scatterplot of log hazard ratio.
Fig 5. Scatterplot of log hazard ratio.
Log hazard ratio for tumor to normal signal intensity for 414 genes vs. overall survival outcomes comparing results from nCounter (x-axis) and microarray (y-axis). The red, green and blue dots represent 6, 49 and 359 genes significantly associated with survival outcomes in both, either, and neither platforms respectively.

References

    1. Ragnhammar P, Hafstrom L, Nygren P, Glimelius B, Care SB-gSCoTAiH. A systematic overview of chemotherapy effects in colorectal cancer. Acta oncologica. 2001;40(2–3):282–308. .
    1. Benson AB 3rd, Schrag D, Somerfield MR, Cohen AM, Figueredo AT, Flynn PJ, et al. American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2004;22(16):3408–19. 10.1200/JCO.2004.05.063 .
    1. Figueredo A, Charette ML, Maroun J, Brouwers MC, Zuraw L. Adjuvant therapy for stage II colon cancer: a systematic review from the Cancer Care Ontario Program in evidence-based care's gastrointestinal cancer disease site group. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2004;22(16):3395–407. 10.1200/JCO.2004.03.087 .
    1. Figueredo A, Coombes ME, Mukherjee S. Adjuvant therapy for completely resected stage II colon cancer. The Cochrane database of systematic reviews. 2008;(3):CD005390 10.1002/14651858.CD005390.pub2 .
    1. Gill S, Loprinzi CL, Sargent DJ, Thome SD, Alberts SR, Haller DG, et al. Pooled analysis of fluorouracil-based adjuvant therapy for stage II and III colon cancer: who benefits and by how much? Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2004;22(10):1797–806. 10.1200/JCO.2004.09.059 .
    1. Mamounas E, Wieand S, Wolmark N, Bear HD, Atkins JN, Song K, et al. Comparative efficacy of adjuvant chemotherapy in patients with Dukes' B versus Dukes' C colon cancer: results from four National Surgical Adjuvant Breast and Bowel Project adjuvant studies (C-01, C-02, C-03, and C-04). Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 1999;17(5):1349–55. .
    1. Barrier A, Boelle PY, Roser F, Gregg J, Tse C, Brault D, et al. Stage II colon cancer prognosis prediction by tumor gene expression profiling. Journal of Clinical Oncology. 2006;24(29):4685–91. 10.1200/Jco.2005.05.0229 WOS:000241191900004.
    1. Eschrich S, Yang I, Bloom G, Kwong KY, Boulware D, Cantor A, et al. Molecular staging for survival prediction of colorectal cancer patients. Journal of Clinical Oncology. 2005;23(15):3526–35. 10.1200/Jco.2005.00.695 WOS:000229352400033.
    1. Smith JJ, Deane NG, Wu F, Merchant NB, Zhang B, Jiang AX, et al. Experimentally Derived Metastasis Gene Expression Profile Predicts Recurrence and Death in Patients With Colon Cancer. Gastroenterology. 2010;138(3):958–68. 10.1053/J.Gastro.2009.11.005 WOS:000275109900027.
    1. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008;26(3):317–25. 10.1038/nbt1385 .
    1. Kojima K, April C, Canasto-Chibuque C, Chen XT, Deshmukh M, Venkatesh A, et al. Transcriptome Profiling of Archived Sectioned Formalin-Fixed Paraffin-Embedded (AS-FFPE) Tissue for Disease Classification. PloS one. 2014;9(1). ARTN e86961 10.1371/journal.pone.0086961 WOS:000330617100042.
    1. Payton JE, Grieselhuber NR, Chang LW, Murakami M, Geiss GK, Link DC, et al. High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples. Journal of Clinical Investigation. 2009;119(6):1714–26. 10.1172/Jci38248 WOS:000266601000036.
    1. Reis PP, Waldron L, Goswami RS, Xu W, Xuan YL, Perez-Ordonez B, et al. mRNA transcript quantification in archival samples using multiplexed, color-coded probes. Bmc Biotechnology. 2011;11 Artn 46 10.1186/1472-6750-11-46 WOS:000291021000001.
    1. Fortina P, Surrey S. Digital mRNA profiling. Nat Biotechnol. 2008;26(3):293–4. 10.1038/nbt0308-293 .
    1. Fritzmann J, Morkel M, Besser D, Budczies J, Kosel F, Brembeck FH, et al. A Colorectal Cancer Expression Profile That Includes Transforming Growth Factor beta Inhibitor BAMBI Predicts Metastatic Potential. Gastroenterology. 2009;137(1):165–75. 10.1053/J.Gastro.2009.03.041 WOS:000267410100027.
    1. Garman KS, Acharya CR, Edelman E, Grade M, Gaedcke J, Sud S, et al. A genomic approach to colon cancer risk stratification yields biologic insights into therapeutic opportunities (Retracted Article. See vol 106, pg 6878, 2009). P Natl Acad Sci USA. 2008;105(49):19432–7. 10.1073/Pnas.0806674105 WOS:000261706600073.
    1. Grade M, Hormann P, Becker S, Hummon AB, Wangsa D, Varma S, et al. Gene expression profiling reveals a massive, aneuploidy-dependent transcriptional deregulation and distinct differences between lymph node-negative and lymph node-positive colon carcinomas (vol 67, pg 41, 2007). Cancer Res. 2007;67(4):1877-. WOS:000244289200059.
    1. Kanies CL, Smith JJ, Kis C, Schmidt C, Levy S, Khabar KSA, et al. Oncogenic Ras and transforming growth factor-beta synergistically regulate AU-rich element-containing mRNAs during epithelial to mesenchymal transition. Molecular Cancer Research. 2008;6(7):1124–36. 10.1158/1541-7786.Mcr-07-2095 WOS:000257895900005.
    1. Ki DH, Jeung HC, Park CH, Kang SH, Lee GY, Lee WS, et al. Whole genome analysis for liver metastasis gene signatures in colorectal cancer. International Journal of Cancer. 2007;121(9):2005–12. 10.1002/Ijc.22975 WOS:000249718100016.
    1. Lin YH, Friederichs J, Black MA, Mages J, Rosenberg R, Guilford PJ, et al. Multiple gene expression classifiers from different array platforms predict poor prognosis of colorectal cancer. Clin Cancer Res. 2007;13(2 Pt 1):498–507. 10.1158/1078-0432.CCR-05-2734 .
    1. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. The New England journal of medicine. 2004;351(27):2817–26. 10.1056/NEJMoa041588 .
    1. Salazar R, Roepman P, Capella G, Moreno V, Simon I, Dreezen C, et al. Gene Expression Signature to Improve Prognosis Prediction of Stage II and III Colorectal Cancer. Journal of Clinical Oncology. 2011;29(1):17–24. 10.1200/Jco.2010.30.1077 WOS:000285712400015.
    1. Tripathi MK, Deane NG, Zhu J, An HB, Mima S, Wang XJ, et al. Nuclear Factor of Activated T-cell Activity Is Associated with Metastatic Capacity in Colon Cancer. Cancer Res. 2014;74(23):6947–57. 10.1158/0008-5472.Can-14-1592 WOS:000346362400020.
    1. Wang Y, Jatkoe T, Zhang Y, Mutch MG, Talantov D, Jiang J, et al. Gene expression profiles and molecular markers to predict recurrence of Dukes' B colon cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2004;22(9):1564–71. 10.1200/JCO.2004.08.186 .
    1. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of affymetrix GeneChip probe level data. Nucleic Acids Research. 2003;31(4). Artn E15 10.1093/Nar/Gng015 WOS:000181115100004.
    1. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27. 10.1093/biostatistics/kxj037 .
    1. Waggott D, Chu K, Yin SM, Wouters BG, Liu FF, Boutros PC. NanoStringNorm: an extensible R package for the pre-processing of NanoString mRNA and miRNA data. Bioinformatics. 2012;28(11):1546–8. 10.1093/Bioinformatics/Bts188 WOS:000304537000024.
    1. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3 10.2202/1544-6115.1027 .
    1. Smith TF, Waterman MS. Identification of Common Molecular Subsequences. Journal of Molecular Biology. 1981;147(1):195–7. 10.1016/0022-2836(81)90087-5 WOS:A1981LJ17700013.
    1. Li Y, Wei J, Xu C, Zhao Z, You T. Prognostic significance of cyclin D1 expression in colorectal cancer: a meta-analysis of observational studies. PloS one. 2014;9(4):e94508 10.1371/journal.pone.0094508
    1. Meding S, Balluff B, Elsner M, Schone C, Rauser S, Nitsche U, et al. Tissue-based proteomics reveals FXYD3, S100A11 and GSTM3 as novel markers for regional lymph node metastasis in colon cancer. The Journal of pathology. 2012;228(4):459–70. 10.1002/path.4021 .
    1. Harris DR, Mims A, Bunz F. Genetic disruption of USP9X sensitizes colorectal cancer cells to 5-fluorouracil. Cancer Biol Ther. 2012;13(13):1319–24. 10.4161/cbt.21792
    1. Peddaboina C, Jupiter D, Fletcher S, Yap JL, Rai A, Tobin RP, et al. The downregulation of Mcl-1 via USP9X inhibition sensitizes solid tumors to Bcl-xl inhibition. BMC Cancer. 2012;12:541 10.1186/1471-2407-12-541
    1. Hedegaard J, Thorsen K, Lund MK, Hein AM, Hamilton-Dutoit SJ, Vang S, et al. Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PloS one. 2014;9(5):e98187 10.1371/journal.pone.0098187
    1. Callari M, Lembo A, Bianchini G, Musella V, Cappelletti V, Gianni L, et al. Accurate data processing improves the reliability of Affymetrix gene expression profiles from FFPE samples. PloS one. 2014;9(1):e86511 10.1371/journal.pone.0086511
    1. Williams PM, Li R, Johnson NA, Wright G, Heath JD, Gascoyne RD. A Novel Method of Amplification of FFPET-Derived RNA Enables Accurate Disease Classification with Microarrays. J Mol Diagn. 2010;12(5):680–6. 10.2353/Jmoldx.2010.090164 WOS:000281690800017.

Source: PubMed

3
Suscribir