PATHOS: a phase II/III trial of risk-stratified, reduced intensity adjuvant treatment in patients undergoing transoral surgery for Human papillomavirus (HPV) positive oropharyngeal cancer

Waheeda Owadally, Chris Hurt, Hayley Timmins, Emma Parsons, Sarah Townsend, Joanne Patterson, Katherine Hutcheson, Ned Powell, Matthew Beasley, Nachi Palaniappan, Max Robinson, Terence M Jones, Mererid Evans, Waheeda Owadally, Chris Hurt, Hayley Timmins, Emma Parsons, Sarah Townsend, Joanne Patterson, Katherine Hutcheson, Ned Powell, Matthew Beasley, Nachi Palaniappan, Max Robinson, Terence M Jones, Mererid Evans

Abstract

Background: Human papillomavirus-positive oropharyngeal squamous cell carcinoma is increasing in incidence worldwide. Current treatments are associated with high survival rates but often result in significant long-term toxicities. In particular, long-term dysphagia has a negative impact on patient quality of life and health. The aim of PATHOS is to determine whether reducing the intensity of adjuvant treatment after minimally invasive transoral surgery in this favourable prognosis disease will result in better long-term swallowing function whilst maintaining excellent disease-specific survival outcomes.

Methods/design: The study is a multicentre phase II/III randomised controlled trial for patients with biopsy-proven Human papillomavirus-positive oropharyngeal squamous cell cancer staged T1-T3 N0-N2b with a primary tumour that is resectable via a transoral approach. Following transoral surgery and neck dissection, patients are allocated into three groups based on pathological risk factors for recurrence. Patients in the low-risk pathology group will receive no adjuvant treatment, as in standard practice. Patients in the intermediate-risk pathology group will be randomised to receive either standard dose post-operative radiotherapy (control) or reduced dose radiotherapy. Patients in the high-risk pathology group will be randomised to receive either post-operative chemoradiotherapy (control) or radiotherapy alone. The primary outcome of the phase II study is patient reported swallowing function measured using the MD Anderson Dysphagia Inventory score at 12 months post-treatment. If the phase II study is successful, PATHOS will proceed to a phase III non-inferiority trial with overall survival as the primary endpoint.

Discussion: PATHOS is a prospective, randomised trial for Human papillomavirus-positive oropharyngeal cancer, which represents a different disease entity compared with other head and neck cancers. The trial aims to demonstrate that long-term dysphagia can be lessened by reducing the intensity of adjuvant treatment without having a negative impact on clinical outcome. The study will standardise transoral surgery and post-operative intensity-modulated radiotherapy protocols in the UK and develop a gold-standard swallowing assessment panel. An associated planned translational research programme, underpinned by tumour specimens and sequential blood collected as part of PATHOS, will facilitate further empirical understanding of this new disease and its response to treatment.

Trial registration: This study is registered with ClinicalTrials.gov identifier NCT02215265 .

Figures

Fig. 1
Fig. 1
Trial schema

References

    1. Mehanna H, Beech T, Nicholson T, El-Hariry I, McConkey C, Paleri V, et al. Prevalence of Human papillomavirus in oropharyngeal and non-oropharyngeal head and neck cancer – systematic review and meta-analysis of trends by time and region. Head Neck. 2013;35(5):747–55. doi: 10.1002/hed.22015.
    1. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tan PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363(1):24–35. doi: 10.1056/NEJMoa0912217.
    1. Huang SH, Xu W, Waldron J, Siu L, Shen X, Tong L, et al. Refining American Joint Committee on Cancer/Union for International Cancer Control TNM Stage and Prognostic Groups for Human Papillomavirus-related oropharyngeal carcinomas. J Clin Oncol. 2015;33(8):836–45. doi: 10.1200/JCO.2014.58.6412.
    1. Rietbergen MM, Brakenhoff RH, Bloemena E, Witte BI, Snijders PJ, Heideman DA, et al. Human papillomavirus detection and comorbidity: critical issues in selection of patients with oropharyngeal cancer for treatment De-escalation trials. Ann Oncol. 2013;24(11):2740–5. doi: 10.1093/annonc/mdt319.
    1. Machtay M, Moughan J, Trotti A, Garden AS, Weber RS, Cooper JS, et al. Factors associated with severe late toxicity after concurrent chemoradiation for locally advanced head and neck cancer: an RTOG analysis. J Clin Oncol. 2008;26(21):3582–9. doi: 10.1200/JCO.2007.14.8841.
    1. Wilson JA, Carding PN, Patterson JM. Dysphagia after nonsurgical head and neck cancer treatment: patients’ perspectives. Otolaryngol Head Neck Surg. 2011;145(5):767–71. doi: 10.1177/0194599811414506.
    1. Patterson JM, Rapley T, Carding PN, Wilson JA, McColl E. Head and neck cancer and dysphagia; caring for carers. Psychooncology. 2013;22(8):1815–20. doi: 10.1002/pon.3226.
    1. Haughey BH, Hinni ML, Salassa JR, Hayden RE, Grant DG, Rich JT, et al. Transoral laser microsurgery as primary treatment for advanced-stage oropharengeal cancer: a United States multicenter study. Head Neck. 2011;33(12):1683–94. doi: 10.1002/hed.21669.
    1. Moore EJ, Hinni ML. Critical review: transoral laser microsurgery and robotic assisted surgery for oropharynx cancer including Human papillomavirus-related cancer. Int J Radiat Oncol Biol Phys. 2013;85(5):1163–7. doi: 10.1016/j.ijrobp.2012.08.033.
    1. O’Hara J, Cosway B, Muirhead C, Leonard N, Goff D, Patterson J. Transoral laser microsurgery ± adjuvant therapy versus chemoradiotherapy for stage III and IVA oropharyngeal squamous cell carcinoma: Preliminary comparison of early swallowing outcomes. Head Neck. 2014; doi:10.1002/hed.23790.
    1. Ang KK, Trotti A, Brown BW, Garden AS, Foote RL, Morrison WH, et al. Randomised trial addressing risk features and time factors of surgery plus radiotherapy in advanced head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2001;51(3):571–8. doi: 10.1016/S0360-3016(01)01690-X.
    1. Sinha P, Lewis JS, Jr, Piccirillo JF, Kallogieri D, Haughey BH. Extracapsular spread and adjuvant therapy in Human papillomavirus-related, p16-positive oropharyngeal carcinoma. Cancer. 2012;118(14):3519–30. doi: 10.1002/cncr.26671.
    1. Kramer S, Gelber RD, Snow JB, Marcial VA, Lowry LD, Davis LW, et al. Combined radiation therapy and surgery in the management of advanced head and neck cancer: final report of study 73–03 of the radiation therapy oncology group. Head Neck Surg. 1987;10(1):19–30. doi: 10.1002/hed.2890100105.
    1. Peters LJ, Goepfert H, Ang KK, Byers RM, Maor MH, Guillamondequi O, et al. Evaluation of the dose for postoperative radiation therapy of head and neck cancer: first report of a prospective ramdomised trial. Int J Radiat Oncol Biol Phys. 1993;26(1):3–11. doi: 10.1016/0360-3016(93)90167-T.
    1. Kimple RJ, Smith MA, Blitzer GC, Torres AD, Martin JA, Yang RZ, et al. Enhanced radiation sensitivity in HPV-positive head and neck cancer. Cancer Res. 2013;73(15):4791–800. doi: 10.1158/0008-5472.CAN-13-0587.
    1. Rieckmann T, Tribius S, Grob TJ, Meyer F, Busch CJ, Petersen C, et al. HNSCC cell lines positive for HPV and p16 possess higher cellular radiosensitivity due to an impaired DSB repair capacity. Radiother Oncol. 2013;107(2):242–6. doi: 10.1016/j.radonc.2013.03.013.
    1. Marur S, Lee JW, Cmelak A, Zhao W, Westra WH, Chung CH, et al. ECOG 1308: a phase II trial of induction chemotherapy followed by cetuximab with low dose versus standard dose IMRT in patients with HPV-associated resectable squamous cell carcinoma of the oropharynx (OP) J Clin Oncol. 2012;30(Suppl 15):abstr 5566.
    1. Bedi M, Firat S, Semenenko VA, Schultz C, Tripp P, Byhardt R, et al. Elective lymph node irradiation with intensity-modulated radiotherapy: is conventional dose fractionation necessary? Int J Radiat Oncol Biol Phys. 2012;83(1):e87–e92. doi: 10.1016/j.ijrobp.2011.12.016.
    1. Cooper JS, Pajak TF, Forastiere AA, Jacobs J, Campbell BH, Saxman SB, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med. 2004;350(19):1937–44. doi: 10.1056/NEJMoa032646.
    1. Bernier J, Domenge C, Ozsahin M, Matuszewska K, Lefebvre JL, Greiner RH, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med. 2004;350(19):1945–52. doi: 10.1056/NEJMoa032641.
    1. Bernier J, Cooper JS, Pajak TF, van Glabbeke M, Bourhis J, Forastiere A, et al. Defining risk levels in locally advanced head and neck cancers: a comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (#9501) Head Neck. 2005;27(10):843–50. doi: 10.1002/hed.20279.
    1. Rackley T, Caley A, Palaniappan N, Evans M. Management of oropharyngeal cancer – UK survey shows variations in practice. Clin Oncol. 2014;26(3):175–7. doi: 10.1016/j.clon.2013.12.001.
    1. Eisbruch A, Kim HM, Feng FY, Lyden TH, Haxer MJ, Feng M, et al. Chemo-IMRT of oropharyngeal cancer aiming to reduce dysphagia: swallowing organs late complication probabilities and dosimetric correlates. Int J Radiat Oncol Biol Phys. 2011;81(3):e93–9. doi: 10.1016/j.ijrobp.2010.12.067.
    1. Schwartz DL, Hutcheson K, Barringer D, Tucker SL, Kies M, Holsinger FC, et al. Candidate dosimetric predictors of long-term swallowing dysfunction after oropharyngeal intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78(5):1356–65. doi: 10.1016/j.ijrobp.2009.10.002.
    1. Hutcheson KA, Holsinger FC, Kupferman ME, Lewin JS. Functional outcomes after TORS for oropharyngeal cancer: a systematic review. Eur Arch Otorhinolaryngol. 2015;272(2):463–71. doi: 10.1007/s00405-014-2985-7.
    1. Steiner W, Ambrosch P, editors. Endoscopic laser surgery of the upper aerodigestive tract: with special emphasis on cancer surgery. Stuttgart, New York: Thieme; 2000.
    1. The Royal College of Radiologists . The timely delivery of radical radiotherapy: standards and guidelines for the management of unscheduled treatment interruptions. 3. London: The Royal College of Radiologists; 2008.
    1. Gregoire V, Ang K, Budach W, Grau C, Hamoir M, Langendijk JA, et al. Delineation of the neck node levels for head and neck tumors: A 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother Oncol. 2014;110(1):172–81. doi: 10.1016/j.radonc.2013.10.010.
    1. Christianen ME, Langendijk JA, Westerlaan HE, van de Water TA, Bijl HP. Delineation of organs at risk involved in swallowing for radiotherapy treatment planning. Radiother Oncol. 2011;101(3):394–402. doi: 10.1016/j.radonc.2011.05.015.
    1. Hutcheson KA, Lisec A, Denise A, Barringer MS, Portwood M, Lewin JS. What is a clinically relevant difference in MDADI scores in head and neck cancer patients? Poster presentation at the American Head and Neck Society 8th international conference on Head and Neck Cancer, Toronto, Canada. 2012.
    1. Dowthwaite SA, Franklin JH, Palma DA, Fung K, Yoo J, Nichols AC. The role of transoral robotic surgery in the management of oropharyngeal cancer: a review of the literature. ISRN Oncol. 2012;2012:945162.
    1. Adelstein DJ, Ridge JA, Brizel DM, Holsinger FC, Haughey BH, O’Sullivan B, et al. Transoral resection of pharyngeal cancer: summary of a National Cancer Institute Head and Neck Cancer Steering Committee Clinical Trials Planning Meeting, November 6-7, 2011, Arlington, Virginia. Head Neck. 2012;34(12):1681–703. doi: 10.1002/hed.23136.
    1. Martin-Harris B, Brodsky MB, Michel Y, Castell DO, Schleicher M, Sandidge J, et al. MBS measurement tool for swallow impairment-MBSImp: establishing a standard. Dysphagia. 2008;23(4):392–405. doi: 10.1007/s00455-008-9185-9.
    1. Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia. 1996;11(2):93–8. doi: 10.1007/BF00417897.

Source: PubMed

3
Suscribir