False-negative results of initial RT-PCR assays for COVID-19: A systematic review

Ingrid Arevalo-Rodriguez, Diana Buitrago-Garcia, Daniel Simancas-Racines, Paula Zambrano-Achig, Rosa Del Campo, Agustin Ciapponi, Omar Sued, Laura Martinez-García, Anne W Rutjes, Nicola Low, Patrick M Bossuyt, Jose A Perez-Molina, Javier Zamora, Ingrid Arevalo-Rodriguez, Diana Buitrago-Garcia, Daniel Simancas-Racines, Paula Zambrano-Achig, Rosa Del Campo, Agustin Ciapponi, Omar Sued, Laura Martinez-García, Anne W Rutjes, Nicola Low, Patrick M Bossuyt, Jose A Perez-Molina, Javier Zamora

Abstract

Background: A false-negative case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is defined as a person with suspected infection and an initial negative result by reverse transcription-polymerase chain reaction (RT-PCR) test, with a positive result on a subsequent test. False-negative cases have important implications for isolation and risk of transmission of infected people and for the management of coronavirus disease 2019 (COVID-19). We aimed to review and critically appraise evidence about the rate of RT-PCR false-negatives at initial testing for COVID-19.

Methods: We searched MEDLINE, EMBASE, LILACS, as well as COVID-19 repositories, including the EPPI-Centre living systematic map of evidence about COVID-19 and the Coronavirus Open Access Project living evidence database. Two authors independently screened and selected studies according to the eligibility criteria and collected data from the included studies. The risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. We calculated the proportion of false-negative test results using a multilevel mixed-effect logistic regression model. The certainty of the evidence about false-negative cases was rated using the GRADE approach for tests and strategies. All information in this article is current up to July 17, 2020.

Results: We included 34 studies enrolling 12,057 COVID-19 confirmed cases. All studies were affected by several risks of bias and applicability concerns. The pooled estimate of false-negative proportion was highly affected by unexplained heterogeneity (tau-squared = 1.39; 90% prediction interval from 0.02 to 0.54). The certainty of the evidence was judged as very low due to the risk of bias, indirectness, and inconsistency issues.

Conclusions: There is substantial and largely unexplained heterogeneity in the proportion of false-negative RT-PCR results. The collected evidence has several limitations, including risk of bias issues, high heterogeneity, and concerns about its applicability. Nonetheless, our findings reinforce the need for repeated testing in patients with suspicion of SARS-Cov-2 infection given that up to 54% of COVID-19 patients may have an initial false-negative RT-PCR (very low certainty of evidence).

Systematic review registration: Protocol available on the OSF website: https://tinyurl.com/vvbgqya.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. PRISMA flow diagram.
Fig 1. PRISMA flow diagram.
Fig 2. Forest plot included studies.
Fig 2. Forest plot included studies.
Notes: FN= False-negative; TN= True negative. QUAOAS-II assessment: D1= risk of bias- patient selection; A1= applicability- patient selection; D2= risk of bias- index test; A2= applicability- index test; D3= risk o f bias- reference standard; A3= applicability- reference standard; D4= risk of bias-flow and timing. Green bullets= low risk of bias; yellow bullets= unclear risk of bias; red bullets= high risk of bias.
Fig 3. Summary of findings (GRADE assessment).
Fig 3. Summary of findings (GRADE assessment).
Notes= 1) Evidence downgraded one level due to risk of bias issues: multiple unclear risk related to patient selection and index test, several studies at high risk of bias in flow and timing Domain; 2) Evidence downgraded one level due to indirectness: unclear or high concerns about applicability of selected populations enrolled in studies; 3) Evidence downgraded one level due to inconsistency: tausquare =1.39.

References

    1. World Health Organization. Coronavirus disease 2019 (COVID-19): Situation Report– 1. Geneve, Switzerland: 2020 January 20–2020. Report No.
    1. Pang J, Wang MX, Ang IYH, Tan SHX, Lewis RF, Chen JI, et al. Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review. J Clin Med. 2020;9(3). 10.3390/jcm9030623 .
    1. Meo SA, Alhowikan AM, Al-Khlaiwi T, Meo IM, Halepoto DM, Iqbal M, et al. Novel coronavirus 2019-nCoV: prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. European review for medical and pharmacological sciences. 2020;24(4):2012–9. Epub 2020/03/07. 10.26355/eurrev_202002_20379 .
    1. World Health Organization. Coronavirus disease 2019 (COVID-19): Situation Report– 51. Geneve, Switzerland: 2020 March 11–2020. Report No.
    1. World Health Organization. Weekly Operational Update on COVID-19: 16 October 2020. Geneve, Switzerland: 2020 October 16–2020. Report No.
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. 10.1016/S0140-6736(20)30183-5 .
    1. Chen Q, Quan B, Li X, Gao G, Zheng W, Zhang J, et al. A report of clinical diagnosis and treatment of nine cases of coronavirus disease 2019. J Med Virol. 2020. 10.1002/jmv.25755 .
    1. Paules CI, Marston HD, Fauci AS. Coronavirus Infections—More Than Just the Common Cold. JAMA. 2020;323(8):707–8. 10.1001/jama.2020.0757
    1. Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA. 2020. 10.1001/jama.2020.3204
    1. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. The Lancet Infectious Diseases. 10.1016/S1473-3099(20)30243-7
    1. Potere N, Valeriani E, Candeloro M, Tana M, Porreca E, Abbate A, et al. Acute complications and mortality in hospitalized patients with coronavirus disease 2019: a systematic review and meta-analysis. Crit Care. 2020;24(1):389 Epub 2020/07/04. 10.1186/s13054-020-03022-1
    1. Meyerowitz-Katz G, Merone L. A systematic review and meta-analysis of published research data on COVID-19 infection-fatality rates. medRxiv. 2020:2020.05.03.20089854. 10.1016/j.ijid.2020.09.1464
    1. Azman AS, Luquero FJ. From China: hope and lessons for COVID-19 control. The Lancet Infectious Diseases. 10.1016/S1473-3099(20)30264-4
    1. Buitrago-Garcia DC, Egli-Gany D, Counotte MJ, Hossmann S, Imeri H, Salanti G, et al. The role of asymptomatic SARS-CoV-2 infections: rapid living systematic review and meta-analysis. medRxiv. 2020:2020.04.25.20079103.
    1. Buitrago-Garcia D, Egli-Gany D, Counotte MJ, Hossmann S, Imeri H, Ipekci AM, et al. Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis. PLoS Med. 2020;17(9):e1003346 Epub 2020/09/23. 10.1371/journal.pmed.1003346 ; following competing interests: GS has participated in two scientific meetings for Merck and Biogen. NL is a member of the PLOS Medicine editorial board.
    1. Chu DKW, Pan Y, Cheng SMS, Hui KPY, Krishnan P, Liu Y, et al. Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clinical chemistry. 2020;66(4):549–55. Epub 2020/02/08. 10.1093/clinchem/hvaa029
    1. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin. 2020;25(3). Epub 2020/01/30. 10.2807/1560-7917.es.2020.25.3.2000045
    1. Lippi G, Simundic AM, Plebani M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clinical chemistry and laboratory medicine. 2020. Epub 2020/03/17. 10.1515/cclm-2020-0285 .
    1. World Health Organization. Laboratory testing for coronavirus disease (COVID-19) in suspected human cases Interim guidance. Geneve, Switzerland: World Health Organization,; 2020.
    1. Asociación Colombiana de Infectología. Consenso Colombiano de Atención, Diagnóstico y Manejo de la Infección por SARS-CoV-2/ COVID-19 en establecimientos de atención de la salud. Infectio. 2020;24(3 (S1)):1–163. 10.22354/in.v24i3.851.
    1. Hanson KE, Caliendo AM, CA Arias, Englund JA, Lee MJ, Loeb M, et al. Infectious Diseases Society of America Guidelines on the Diagnosis of COVID-19. Arlington, VA: Infectious Diseases Society of America; 2020.
    1. National Institute for Communicable Diseases Department. Clinical Management of Suspected or confirmed COVID-19 Disease. In: Department of Health, editor. V2 ed South Africa: Republic of South Africa; 2020.
    1. Pakistan Chest Society (PCS) Guidelines Working Group. Guidelines on Management of Patients with COVID-19. Pakistan: Pakistan Chest Society; 2020.
    1. Li D, Wang D, Dong J, Wang N, Huang H, Xu H, et al. False-Negative Results of Real-Time Reverse-Transcriptase Polymerase Chain Reaction for Severe Acute Respiratory Syndrome Coronavirus 2: Role of Deep-Learning-Based CT Diagnosis and Insights from Two Cases. Korean journal of radiology. 2020;21(4):505–8. Epub 2020/03/17. 10.3348/kjr.2020.0146
    1. Gostin LO. Public Health Emergency Preparedness: Globalizing Risk, Localizing Threats. JAMA. 2018;320(17):1743–4. 10.1001/jama.2018.16491
    1. Lin C, Ye R, Xia YL. A meta-analysis to evaluate the effectiveness of real-time PCR for diagnosing novel coronavirus infections. Genetics and molecular research: GMR. 2015;14(4):15634–41. Epub 2015/12/05. 10.4238/2015.December.1.15 .
    1. Sharfstein JM, Becker SJ, Mello MM. Diagnostic Testing for the Novel Coronavirus. JAMA. 2020. 10.1001/jama.2020.3864
    1. McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM, Clifford T, et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: The PRISMA-DTA statement. JAMA. 2018;319(4):338–96. 10.1001/jama.2017.19163
    1. Digital Solution Foundry, EPPI-Centre. EPPI-Mapper. Version 125: EPPI-Centre, UCL Social Research Institute, University Collegue London; 2020.
    1. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of internal medicine. 2011;155(8):529–36. Epub 2011/10/19. 10.7326/0003-4819-155-8-201110180-00009 .
    1. The Joanna Briggs Institute. Checklist for Case Series Adelaide, Australia: The Joanna Briggs Institute,; 2017.
    1. Schünemann HJ, Mustafa RA, Brozek J, Steingart KR, Leeflang M, Murad MH, et al. GRADE guidelines: 21 part 1. Study design, risk of bias and indirectness in rating the certainty across a body of evidence for test accuracy. Journal of Clinical Epidemiology. 10.1016/j.jclinepi.2019.12.020
    1. Schünemann HJ, Mustafa RA, Brozek J, Steingart KR, Leeflang M, Murad MH, et al. GRADE guidelines: 21 part 2. Inconsistency, Imprecision, publication bias and other domains for rating the certainty of evidence for test accuracy and presenting it in evidence profiles and summary of findings tables. Journal of Clinical Epidemiology. 10.1016/j.jclinepi.2019.12.021
    1. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology. 2020:200642 10.1148/radiol.2020200642 .
    1. Albert E, Ferrer B, Torres I, Serrano A, Alcaraz MJ, Buesa J, et al. Amplification of human β-glucoronidase gene for appraising the accuracy of negative SARS-CoV-2 RT-PCR results in upper respiratory tract specimens. J Med Virol. 2020. rayyan-84652710.
    1. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology. 2020:200463 10.1148/radiol.2020200463 .
    1. Besutti G, Giorgi Rossi P, Iotti V, Spaggiari L, Bonacini R, Nitrosi A, et al. Accuracy of CT in a cohort of symptomatic patients with suspected COVID-19 pneumonia during the outbreak peak in Italy. European radiology. 2020. rayyan-84651884.
    1. Chen D, Jiang X, Hong Y, Wen Z, Wei S, Peng G, et al. Can Chest CT Features Distinguish Patients With Negative From Those With Positive Initial RT-PCR Results for Coronavirus Disease (COVID-19)? AJR American journal of roentgenology. 2020:01-May rayyan-84653196. 10.2214/AJR.20.23012
    1. Chen HJ QJ, Wu B, Huang T, Gao Y, Wang ZP, Chen Y, et al. Early Chest CT Features of Patients with 2019 Novel Coronavirus (COVID-19) Pneumonia: Relationship to Diagnosis and Prognosis. In: College) HGHAHHoHM, editor.: Research Square; 2020. p. 21.
    1. Chen ZH, Li YJ, Wang XJ, Ye YF, Wu BL, Zhang Y, et al. Chest CT of COVID-19 in patients with a negative first RT-PCR test: Comparison with patients with a positive first RT-PCR test. Medicine (Baltimore). 2020;99(26):e20837 rayyan-84652253. 10.1097/MD.0000000000020837
    1. Çinkooğlu A, Hepdurgun C, Bayraktaroğlu S, Ceylan N, Savaş R. CT imaging features of COVID-19 pneumonia: initial experience from Turkey. Diagn Interv Radiol. 2020. rayyan-84652386. 10.5152/dir.2020.20307
    1. Dai H, Zhang X, Xia J, Zhang T, Shang Y, Huang R, et al. High-resolution Chest CT Features and Clinical Characteristics of Patients Infected with COVID-19 in Jiangsu, China. International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases. 2020;95:106–12. Epub 2020/04/10. 10.1016/j.ijid.2020.04.003
    1. Duan X, Guo X, Qiang J. A retrospective study of the initial 25 COVID-19 patients in Luoyang, China. Jpn J Radiol. 2020;38(7):683–90. Epub 2020/05/28. 10.1007/s11604-020-00988-4
    1. Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, et al. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology. 2020:200432 10.1148/radiol.2020200432 .
    1. Fechner C, Strobel K, Treumann T, Sonderegger B, Azzola A, Fornaro J, et al. COVID-19 and the role of imaging: early experiences in Central Switzerland. Swiss Med Wkly. 2020;150:w20304 rayyan-84652303. 10.4414/smw.2020.20304
    1. Gietema HA, Zelis N, Nobel JM, Lambriks LJG, van Alphen LB, Oude Lashof AML, et al. CT in relation to RT-PCR in diagnosing COVID-19 in the Netherlands: a prospective study. medRxiv. 2020:2020.04.22.20070441. 10.1371/journal.pone.0235844
    1. He JL, Luo L, Luo ZD, Lyu JX, Ng MY, Shen XP, et al. Diagnostic performance between CT and initial real-time RT-PCR for clinically suspected 2019 coronavirus disease (COVID-19) patients outside Wuhan, China. Respir Med. 2020;168:105980 rayyan-84653215. 10.1016/j.rmed.2020.105980
    1. Lan FY, Filler R, Mathew S, Buley J, Iliaki E, Bruno-Murtha LA, et al. COVID-19 symptoms predictive of healthcare workers’ SARS-CoV-2 PCR results. PLoS ONE. 2020;15(6):e0235460 rayyan-84652250. 10.1371/journal.pone.0235460
    1. Lee TH, Lin RJ, Lin RTP, Barkham T, Rao P, Leo YS, et al. Testing for SARS-CoV-2: Can We Stop at Two? Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2020. Epub 2020/04/20. 10.1093/cid/ciaa459 .
    1. Li Y, Yao L, Li J, Chen L, Song Y, Cai Z, et al. Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. J Med Virol. 2020. Epub 2020/03/29. 10.1002/jmv.25786 .
    1. Long C, Xu H, Shen Q, Zhang X, Fan B, Wang C, et al. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? European journal of radiology. 2020;126:108961 Epub 2020/04/02. 10.1016/j.ejrad.2020.108961
    1. Long DR, Gombar S, Hogan CA, Greninger AL, Shah VO, Bryson-Cahn C, et al. Occurrence and Timing of Subsequent SARS-CoV-2 RT-PCR Positivity Among Initially Negative Patients. Clin Infect Dis. 2020. rayyan-84652613.
    1. Ma H, Hu J, Tian J, Zhou X, Li H, Laws MT, et al. A single-center, retrospective study of COVID-19 features in children: a descriptive investigation. BMC Med. 2020;18(1):123 rayyan-84653168. 10.1186/s12916-020-01596-9
    1. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020. 10.1001/jama.2020.6775
    1. Shen N, Zhu Y, Wang X, Peng J, Liu W, Wang F, et al. Characteristics and diagnosis rate of 5630 subjects receiving SARS-CoV-2 nucleic acid tests from Wuhan, China. JCI Insight. 2020;5(10). Epub 2020/05/01. 10.1172/jci.insight.137662
    1. Wang P. Combination of Serological Total Antibody and RT-PCR Test for Detection of SARS-CoV-2 Infections. J Virol Methods. 2020:113919 rayyan-84652376. 10.1016/j.jviromet.2020.113919
    1. Wen Z, Chi Y, Zhang L, Liu H, Du K, Li Z, et al. Coronavirus Disease 2019: Initial Detection on Chest CT in a Retrospective Multicenter Study of 103 Chinese Subjects. Radiology: Cardiothoracic Imaging. 2020;2(2):e200092.
    1. Wong HYF, Lam HYS, Fong AH, Leung ST, Chin TW, Lo CSY, et al. Frequency and Distribution of Chest Radiographic Findings in COVID-19 Positive Patients. Radiology. 2019:201160. Epub 2020/03/29.
    1. Wu J, Liu J, Zhao X, Liu C, Wang W, Wang D, et al. Clinical Characteristics of Imported Cases of COVID-19 in Jiangsu Province: A Multicenter Descriptive Study. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2020. Epub 2020/02/29.
    1. Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for Typical 2019-nCoV Pneumonia: Relationship to Negative RT-PCR Testing. Radiology. 2020:200343 10.1148/radiol.2020200343 .
    1. Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. Jama. 2020;323(15):1488–94. Epub 2020/03/04. Sanofi and Roche. Dr Wang reported receiving grants from the Ministry of Health, Singapore. No other disclosures were reported.
    1. Zhang H, Shang W, Liu Q, Zhang X, Zheng M, Yue M. Clinical characteristics of 194 cases of COVID-19 in Huanggang and Taian, China. Infection. 2020. rayyan-84653097. 10.1007/s15010-020-01440-5
    1. Zhang JJ, Cao YY, Dong X, Wang BC, Liao MY, Lin J, et al. Distinct characteristics of COVID-19 patients with initial rRT-PCR-positive and rRT-PCR-negative results for SARS-CoV-2. Allergy. 2020. Epub 2020/04/14. 10.1111/all.14316 .
    1. Zhao J YQ, Wang H, Liu W, Liao X, Su Y, Wang X, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. In: Hospital STPs, editor. MedRxiv2020. p. 28.
    1. Zhifeng J, Feng A, Li T. Consistency analysis of COVID-19 nucleic acid tests and the changes of lung CT. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. 2020;127:104359 Epub 2020/04/18. 10.1016/j.jcv.2020.104359
    1. Zhou H, Xu K, Shen Y, Fang Q, Chen F, Sheng J, et al. Coronavirus disease 2019 (COVID-19): chest CT characteristics benefit to early disease recognition and patient classification-a single center experience. Ann Transl Med. 2020;8(11):679 rayyan-84652107. 10.21037/atm-20-2119a
    1. Zhou S, Zhu T, Wang Y, Xia L. Imaging features and evolution on CT in 100 COVID-19 pneumonia patients in Wuhan, China. European radiology. 2020. rayyan-84653193.
    1. He J-L, Luo L, Luo Z-D, Lyu J-X, Ng M-Y, Shen X-P, et al. Diagnostic performance between CT and initial real-time RT-PCR for clinically suspected 2019 coronavirus disease (COVID-19) patients outside Wuhan, China. Respiratory Medicine. 10.1016/j.rmed.2020.105980 .
    1. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure. LID—10.7326/M20-1495 LID - M20-1495. (1539–3704 (Electronic)).
    1. Wilson MG, Lavis JN, Gauvin FP. Developing a rapid-response program for health system decision-makers in Canada: findings from an issue brief and stakeholder dialogue. Systematic reviews. 2015;4:25 Epub 2015/04/16. 10.1186/s13643-015-0009-3
    1. Moore G, Redman S, Rudge S, Haynes A. Do policy-makers find commissioned rapid reviews useful? Health Res Policy Syst. 2018;16(1):17 Epub 2018/02/28. 10.1186/s12961-018-0293-1
    1. Hartling L, Guise JM, Hempel S, Featherstone R, Mitchell MD, Motu’apuaka ML, et al. Fit for purpose: perspectives on rapid reviews from end-user interviews. Systematic reviews. 2017;6(1):32 10.1186/s13643-017-0425-7
    1. Bossuyt PM. Testing COVID-19 tests faces methodological challenges. Journal of clinical epidemiology. 10.1016/j.jclinepi.2020.06.037

Source: PubMed

3
Suscribir