Searching for the optimal tDCS target for motor rehabilitation

Isadora Santos Ferreira, Beatriz Teixeira Costa, Clara Lima Ramos, Pedro Lucena, Aurore Thibaut, Felipe Fregni, Isadora Santos Ferreira, Beatriz Teixeira Costa, Clara Lima Ramos, Pedro Lucena, Aurore Thibaut, Felipe Fregni

Abstract

Background: Transcranial direct current stimulation (tDCS) has been investigated over the years due to its short and also long-term effects on cortical excitability and neuroplasticity. Although its mechanisms to improve motor function are not fully understood, this technique has been suggested as an alternative therapeutic method for motor rehabilitation, especially those with motor function deficits. When applied to the primary motor cortex, tDCS has shown to improve motor function in healthy individuals, as well as in patients with neurological disorders. Based on its potential effects on motor recovery, identifying optimal targets for tDCS stimulation is essential to improve knowledge regarding neuromodulation as well as to advance the use of tDCS in clinical motor rehabilitation.

Methods and results: Therefore, this review discusses the existing evidence on the application of four different tDCS montages to promote and enhance motor rehabilitation: (1) anodal ipsilesional and cathodal contralesional primary motor cortex tDCS, (2) combination of central tDCS and peripheral electrical stimulation, (3) prefrontal tDCS montage and (4) cerebellar tDCS stimulation. Although there is a significant amount of data testing primary motor cortex tDCS for motor recovery, other targets and strategies have not been sufficiently tested. This review then presents the potential mechanisms and available evidence of these other tDCS strategies to promote motor recovery.

Conclusions: In spite of the large amount of data showing that tDCS is a promising adjuvant tool for motor rehabilitation, the diversity of parameters, associated with different characteristics of the clinical populations, has generated studies with heterogeneous methodologies and controversial results. The ideal montage for motor rehabilitation should be based on a patient-tailored approach that takes into account aspects related to the safety of the technique and the quality of the available evidence.

Keywords: Motor rehabilitation; Non-invasive brain stimulation; Pain modulation; Transcranial direct current stimulation.

Conflict of interest statement

The authors have nothing to declare.

Figures

Fig. 1
Fig. 1
Motor cortex stimulation in a scenario where the left hemisphere was lesioned. Figure a Anodal stimulation of left primary motor cortex: anode over the left M1 and cathode over the right supraorbital region. Figure b Cathodal stimulation of right primary motor cortex: cathode over the right M1 and anode over the left supraorbital region. Figure c Bilateral stimulation: anode over the affected hemisphere (left) and cathode over the non-affected hemisphere (right)
Fig. 2
Fig. 2
Left median nerve stimulation combined with tDCS. Anodal stimulation of the right motor cortex (C4) with the reference electrode over the contralateral supraorbital region
Fig. 3
Fig. 3
Anodal stimulation of left dorsolateral prefrontal cortex (DLPFC). Figure a: reference electrode positioned over the contralateral supraorbital region. Figure b: reference electrode positioned over the right DLPFC
Fig. 4
Fig. 4
Bilateral cerebellar hemispheres stimulation. The active electrode is placed 1 to 2 cm below the inion. Figure a: anodal stimulation of the cerebellum with the reference electrode placed over the right shoulder. Figure b: anodal stimulation of the cerebellum with the reference electrode placed over buccinator muscle. Figure c. anodal stimulation of cerebellum and reference electrode over Cz

References

    1. Liebetanz D, Nitsche M. A, Tergau F, Paulus W. pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002;125(Pt 10):2238–2247.
    1. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2014;17(1):37–53.
    1. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899–1901.
    1. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204.
    1. Kabakov AY, Muller PA, Pascual-leone A, Jensen FE, Rotenberg A. Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus 2012;1881–1889.
    1. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol [Internet] 2000;527(3):633–639.
    1. Banissy MJ, Muggleton NG. Transcranial direct current stimulation in sports training : potential approaches 2013;7(April):2005–7.
    1. Williams PS, Hoffman RL, Clark BC. Preliminary Evidence That Anodal Transcranial Direct Current Stimulation Enhances Time to Task Failure of a Sustained Submaximal Contraction. 2013;8(12).
    1. Bastani A, Jaberzadeh S. Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individuals and subjects with stroke: a systematic review and meta-analysis. Clin Neurophysiol. 2012;123(4):644–657.
    1. Flöel A. TDCS-enhanced motor and cognitive function in neurological diseases. NeuroImage. 2014.
    1. Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJL, Lima MC, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport. 2005;16(14):1551–1555.
    1. Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci. 2007;25(2):123–129.
    1. Kim DY, Lim JY, Kang EK, You DS, Oh MK, Oh BM PN. Effect of Transcranial Direct Current Stimulation on Motor Recovery in Patients with Subacute Stroke Conclusions : 2010;879–886.
    1. Di V, Dileone M, Capone F, Pellegrino G, Ranieri F, Musumeci G, et al. Immediate and late modulation of Interhemipheric imbalance with bilateral transcranial direct current stimulation in acute stroke. Brain Stimul. 2014;7(6):841–848.
    1. Benninger DH, Lomarev M, Lopez G, Wassermann EM, Li X, Considine E, et al. Transcranial direct current stimulation for the treatment of Parkinson ’ s disease.
    1. Ferrucci R, Vergari M, Cogiamanian F, Bocci T, Ciocca M, Tomasini E, et al. Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis. NeuroRehabilitation. 2014;34(1):121–127.
    1. Cuypers K, Leenus DJF, Van Wijmeersch B, Thijs H, Levin O, Swinnen SP, et al. Anodal tDCS increases corticospinal output and projection strength in multiple sclerosis. Neurosci Lett. 2013;554:151–155.
    1. Ranieri F., Podda M. V., Riccardi E., Frisullo G., Dileone M., Profice P., Pilato F., Di Lazzaro V., Grassi C. Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. Journal of Neurophysiology. 2012;107(7):1868–1880.
    1. Polanía R, Paulus W, Antal A, Nitsche MA. Introducing graph theory to track for neuroplastic alterations in the resting human brain : a transcranial direct current stimulation study. Neuroimage. 2011;54(3):2287–2296.
    1. Hattori Y, Moriwaki A, Hori Y. Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex 1990;116:2–5.
    1. Islam N, Aftabuddin M, Moriwaki A, Hattori Y, Hori Y. Increase in the calcium level following anodal polarization in the rat brain 1995;684:206–208.
    1. Zheng X, Alsop DC, Schlaug G. Effects of transcranial direct current stimulation ( tDCS ) on human regional cerebral blood fl ow. Neuroimage. 2011;58(1):26–33.
    1. Bikson AM, Grossman P, Thomas C, Louis A, Jiang J, Adnan T, et al. Safety of transcranial Direct Current Stimulation : Evidence Based Update 2016. Brain Stimul 2016;
    1. Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011;14(8):1133–1145.
    1. Poreisz C, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients 2007;72:208–214.
    1. Nitsche Michael A., Cohen Leonardo G., Wassermann Eric M., Priori Alberto, Lang Nicolas, Antal Andrea, Paulus Walter, Hummel Friedhelm, Boggio Paulo S., Fregni Felipe, Pascual-Leone Alvaro. Transcranial direct current stimulation: State of the art 2008. Brain Stimulation. 2008;1(3):206–223.
    1. Redfearn JWT. The Action of brief polarizing currents on the cerebral cortex of the rat ( I ) during from the department of physiology , University College London electrical activity of the rat cerebral cortex , we found that prolonged. 1964;369–382.
    1. Cavaleiro P, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation 2006;117:1623–1629.
    1. Datta A, Baker JM, Bikson M. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimul. 2011;4(3):169–174.
    1. Bolzoni F, Pettersson L, Jankowska E. Evidence for long-lasting subcortical facilitation by transcranial direct current stimulation in the cat. 2013;13:3381–3399.
    1. DaSilva Alexandre F., Mendonca Mariana E., Zaghi Soroush, Lopes Mariana, DosSantos Marcos Fabio, Spierings Egilius L., Bajwa Zahid, Datta Abhishek, Bikson Marom, Fregni Felipe. tDCS-Induced Analgesia and Electrical Fields in Pain-Related Neural Networks in Chronic Migraine. Headache: The Journal of Head and Face Pain. 2012;52(8):1283–1295.
    1. Knotkova H, Nitsche MA, Cruciani RA. Putative physiological mechanisms underlying tDCS analgesic effects. Front Hum Neurosci. 2013;7.
    1. Polanía R, Paulus W, Nitsche MA. Modulating Cortico-Striatal and Thalamo-Cortical Functional Connectivity with Transcranial Direct Current Stimulation 2011;000.
    1. Mahmoudi H, Haghighi AB, Petramfar P, Jahanshahi S, Salehi Z, Fregni F. Transcranial direct current stimulation: electrode montage in stroke. Disabil Rehabil. 2011;33(15–16):1383–1388.
    1. Chelette K, Carrico C, Nichols L, Salyers E, Sawaki L. Effects of electrode configurations in transcranial direct current stimulation after stroke. Ieee Heal. 2014:12–7.
    1. Fusco A, De Angelis D, Morone G, Maglione L, Paolucci T, Bragoni M, et al. The ABC of tDCS: effects of anodal, bilateral and cathodal montages of transcranial direct current stimulation in patients with stroke - a pilot study. Stroke Res Treat. 2013;2013.
    1. Giordano J, Bikson M, Kappenman ES, Clark VP, Coslett HB, Hamblin MR, et al. Mechanisms and effects of transcranial direct current stimulation. Dose-Response. 2017;15(1):1–22.
    1. Peters HT, Edwards DJ, Wortman-Jutt S, Page SJ. Moving forward by stimulating the brain: transcranial direct current stimulation in post-stroke hemiparesis. Front Hum Neurosci [Internet] 2016;10(August):1–8. Available from: 10.3389/fnhum.2016.00394/abstract
    1. Felipe Fregni CP. A Combined Therapeutic Approach in Stroke Rehabilitation: A Review on Non-Invasive Brain Stimulation plus Pharmacotherapy. Int J Neurorehabilitation [Internet]. 2014;01(03). Available from: .
    1. Loubinoux I, Carel C, Pariente J, Dechaumont S, Albucher JF, Marque P, et al. Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage. 2003;20(4):2166–2180.
    1. Nair DG, Hutchinson S, Fregni F, Alexander M, Pascual-Leone A, Schlaug G. Imaging correlates of motor recovery from cerebral infarction and their physiological significance in well-recovered patients. Neuroimage. 2007;34(1):253–263.
    1. Schlaug G, Renga V, Nair D. Transcranial direct current stimulation in stroke recovery. Stroke. 2009;65(12):1571–1576.
    1. Hummel F, Cohen LG. Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke. Neurorehabil Neural Repair. 2005;19(1):14–19.
    1. Gomez Palacio Schjetnan A, Faraji J, Metz GA, Tatsuno M, Luczak A. Transcranial direct current stimulation in stroke rehabilitation: A review of recent advancements. Stroke Res Treat. 2013;(February).
    1. Stagg CJ, Bachtiar V, O’Shea J, Allman C, Bosnell RA, Kischka U, et al. Cortical activation changes underlying stimulation-induced behavioural gains in chronic stroke. Brain. 2012;135(1):276–284.
    1. Zimerman M, Heise KF, Hoppe J, Cohen LG, Gerloff C, Hummel FC. Modulation of training by single-session transcranial direct current stimulation to the intact motor cortex enhances motor skill acquisition of the paretic hand. Stroke. 2012;43(8):2185–2191.
    1. Vines BW, Cerruti C, Schlaug G healthy subjects ’ non-dominant hand compared to uni-hemisphere stimulation 2008;7:1–7.
    1. Bertolucci F, Chisari C, Fregni F. The potential dual role of transcallosal inhibition in post-stroke motor recovery. 2018;36:83–97.
    1. Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A. Transcranial direct current stimulation: a computer-based human model study. Neuroimage. 2007;35(3):1113–1124.
    1. Lindenberg R, Zhu LL, Schlaug G. Combined central and peripheral stimulation to facilitate motor recovery after stroke: the effect of number of sessions on outcome. Neurorehabil Neural Repair. 2012;26(5):479–483.
    1. Menezes Isabella S., Cohen Leonardo G., Mello Eduardo A., Machado André G., Peckham Paul Hunter, Anjos Sarah M., Siqueira Inara L., Conti Juliana, Plow Ela B., Conforto Adriana B. Combined Brain and Peripheral Nerve Stimulation in Chronic Stroke Patients With Moderate to Severe Motor Impairment. Neuromodulation: Technology at the Neural Interface. 2017;21(2):176–183.
    1. Celnik P, Paik N, Vandermeeren Y, Dimyan M, Cohen LG. Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence. 2009.
    1. Brosseau L, Ka Y, Welch V, Marchand S, Judd M, Ga W, et al. Transcutaneous electrical nerve stimulation ( TENS ) for the treatment of rheumatoid arthritis in the hand ( Review ). 2010;(2).
    1. Hazime FA, De Freitas DG, Monteiro RL, Maretto RL, De Almeida Carvalho NA, Hasue RH, et al. Analgesic efficacy of cerebral and peripheral electrical stimulation in chronic nonspecific low back pain: A randomized, double-blind, factorial clinical trial. BMC Musculoskelet Disord. 2015;16(1).
    1. Boggio PS, Amancio EJ, Correa CF, Cecilio S, Valasek C, Bajwa Z, et al. Transcranial DC stimulation coupled with TENS for the treatment of chronic pain: a preliminary study. Clin J Pain [Internet] 2009;25(8):691–695.
    1. Melzack R, Wall PD. Pain Mechanisms : A New The (. Science (80- ). 2008;150(3699):971–979.
    1. Fraser C, Power M, Hamdy S, Rothwell J, Hobday D, Hollander I, et al. Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury. Neuron. 2002;34(5):831–840.
    1. Conforto AB, Cohen LG, K-LA. Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann Neurol. 2002;51(1):122.
    1. Sawaki L, Wu CWH, Kaelin-Lang A, Cohen LG. Effects of somatosensory stimulation on use-dependent plasticity in chronic stroke. Stroke. 2006;37(1):246–247.
    1. Conforto AB, Cohen LG, Dos Santos RL, Scaff M, Marie SKN. Effects of somatosensory stimulation on motor function in chronic cortico-subcortical strokes. J Neurol. 2007;254(3):333–339.
    1. Celnik P, Hummel F, Harris-Love M, Wolk R, Cohen LG. Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Arch Phys Med Rehabil. 2007;88(11):1369–1376.
    1. Luft AR, Waller S, Forrester L, Smith GV, Whitall J, Macko RF, et al. Lesion location alters brain activation in chronically impaired stroke survivors. Neuroimage. 2004;21(3):924–935.
    1. Wu CW, Seo HJ, Cohen LG. Influence of electric somatosensory stimulation on paretic-hand function in chronic stroke. Arch Phys Med Rehabil. 2006;87(3):351–357.
    1. Pan LLH, Yang WW, Kao CL, Tsai MW, Wei SH, Fregni F, et al. Effects of 8-week sensory electrical stimulation combined with motor training on EEG-EMG coherence and motor function in individuals with stroke. Sci Rep. 2018;8(1):1–10.
    1. Dedoncker J, Brunoni AR, Baeken C, Vanderhasselt MA. A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: influence of stimulation parameters. Brain Stimul. 2016;9(4):501–517.
    1. Keeser D, Meindl T, Bor J, Palm U, Pogarell O, Mulert C, et al. Prefrontal Transcranial Direct Current Stimulation Changes Connectivity of Resting-State Networks during fMRI 2011;31(43):15284–15293.
    1. Wörsching J, Padberg F, Ertl-Wagner B, Kumpf U, Kirsch B, Keeser D. Imaging transcranial direct current stimulation (tDCS) of the prefrontal cortex—correlation or causality in stimulation-mediated effects? Vol. 69, Neuroscience and Biobehavioral Reviews. 2016. p. 333–56.
    1. Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;
    1. Doruk D, Gray Z, Bravo GL, Pascual-leone A, Fregni F. Effects of tDCS on executive function in Parkinson’s disease. Neurosci Lett. 2014.
    1. Gbadeyan XO, Mcmahon XK, Steinhauser XM, Meinzer M. Stimulation of Dorsolateral Prefrontal Cortex Enhances Adaptive Cognitive Control : A High-Definition Transcranial Direct Current Stimulation Study 2016;36(50):12530–12536.
    1. Rossi AF, Pessoa L, Desimone R, Ungerleider LG. The prefrontal cortex and the executive control of attention 2009;489–497.
    1. Dagan M, Herman T, Harrison R, Zhou J, Giladi N, Ruffini G, et al. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson’s disease. Mov Disord. 2018.
    1. Miler JA, Meron D, Mrcpsych DM, Baldwin DS, Frcpsych MADM, Garner M. The Effect of Prefrontal Transcranial Direct Current Stimulation on Attention Network Function in Healthy Volunteers 2017;2017.
    1. Clarke PJF, Browning M, Hammond G, Notebaert L, Macleod C. The causal role of the dorsolateral prefrontal cortex. Biol Psychiatry. 2014;76(12):946–952.
    1. Sanchez-lopez A. Neurocognitive mechanisms behind emotional attention : inverse effects of anodal tDCS over the left and right DLPFC on gaze disengagement from emotional faces. 2018;
    1. Oveisgharan S, Organji H, Ghorbani A. Enhancement of motor recovery through left dorsolateral prefrontal cortex stimulation after acute ischemic stroke. J Stroke Cerebrovasc Dis. 2018;27(1):185–191.
    1. Vaseghi B, Zoghi M, Jaberzadeh S. How does anodal transcranial direct current stimulation of the pain neuromatrix affect brain excitability and pain perception? A randomised, double-blind, sham-control study. PLoS One. 2015;10(3):1–21.
    1. Vaseghi B, Zoghi M, Jaberzadeh S. The effects of anodal-tDCS on corticospinal excitability enhancement and its after-effects : conventional vs . unihemispheric concurrent dual-site stimulation. 2015;9(September):1–13.
    1. Bastian AJ. Moving, sensing and learning with cerebellar damage. Curr Opin Neurobiol. 2011.
    1. Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013.
    1. Wessel MJ, Hummel FC. Non-invasive cerebellar stimulation: a promising approach for stroke recovery? Cerebellum. 2018.
    1. Thibaut A, Di Perri C, Chatelle C, Bruno M-A, Bahri MA, Wannez S, et al. Clinical response to tDCS depends on residual brain metabolism and Grey matter integrity in patients with minimally conscious state. Brain Stimul. 2015;8(6):1116–1123.
    1. Baron JC, Bousser MG, Comar D, Soussaline F, Castaigne P. Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur Neurol. 1981.
    1. Gold L, Lauritzen M. Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc Natl Acad Sci U S A. 2002;99(11):7699–7704.
    1. Bindman LJ, Lippold OCJ, JWT R. Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature. 1962.
    1. Oldrati V, Schutter DJLG. Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum. 2017.
    1. Lang Nicolas, Siebner Hartwig R., Ward Nick S., Lee Lucy, Nitsche Michael A., Paulus Walter, Rothwell John C., Lemon Roger N., Frackowiak Richard S. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? European Journal of Neuroscience. 2005;22(2):495–504.
    1. Galea J. M., Jayaram G., Ajagbe L., Celnik P. Modulation of Cerebellar Excitability by Polarity-Specific Noninvasive Direct Current Stimulation. Journal of Neuroscience. 2009;29(28):9115–9122.
    1. Naro A, Bramanti A, Leo A, Manuli A, Sciarrone F, Russo M, et al. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Brain Struct Funct. 2017.
    1. Cantarero G, Spampinato D, Reis J, Ajagbe L, Thompson T, Kulkarni K, et al. Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy. J Neurosci. 2015.
    1. Wessel MJ, Zimerman M, Timmermann JE, Heise KF, Gerloff C, Hummel FC. Enhancing consolidation of a new temporal motor skill by cerebellar noninvasive stimulation. Cereb Cortex. 2016;26(4):1660–1667.
    1. Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, et al. Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum. 2013.
    1. Galea JM, Vazquez A, Pasricha N, Orban De Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2011;21(8):1761–1770.
    1. Hardwick Robert M., Celnik Pablo A. Cerebellar direct current stimulation enhances motor learning in older adults. Neurobiology of Aging. 2014;35(10):2217–2221.
    1. Zandvliet SB, Meskers CGM, Kwakkel G, van Wegen EEH. Short-Term Effects of Cerebellar tDCS on Standing Balance Performance in Patients with Chronic Stroke and Healthy Age-Matched Elderly. Cerebellum. 2018;
    1. Picelli A, Chemello E, Castellazzi P, Roncari L, Waldner A, Saltuari L, et al. Combined effects of transcranial direct current stimulation (tDCS) and transcutaneous spinal direct current stimulation (tsDCS) on robot-assisted gait training in patients with chronic stroke: a pilot, double blind, randomized controlled trial. Restor Neurol Neurosci. 2015.
    1. Sebastian R, Saxena S, Tsapkini K, Faria AV, Long C, Wright A, et al. Cerebellar tDCS: a novel approach to augment language treatment post-stroke. Front Hum Neurosci. 2017.
    1. Zuchowski ML, Timmann D, Gerwig M. Acquisition of conditioned eyeblink responses is modulated by cerebellar tDCS. Brain Stimul. 2014;7(4):525–531.
    1. Herzfeld DJ, Pastor D, Haith AM, Rossetti Y, Shadmehr R, O’Shea J. Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories. Neuroimage. 2014;98:147–158.
    1. Chen J-C, Haemmerer D, D’Ostilio K, Casula EP, Marshall L, Tsai C-H, et al. Bi-directional modulation of somatosensory mismatch negativity with transcranial direct current stimulation: an event related potential study. J Physiol. 2014;592(4):745–757.
    1. Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, et al. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot. 2012;26(5):786–799.
    1. Rampersad Sumientra M., Janssen Arno M., Lucka Felix, Aydin Umit, Lanfer Benjamin, Lew Seok, Wolters Carsten H., Stegeman Dick F., Oostendorp Thom F. Simulating Transcranial Direct Current Stimulation With a Detailed Anisotropic Human Head Model. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2014;22(3):441–452.
    1. Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol. 2014;592(16):3345–3369.
    1. Inamura T, Unenaka S, Shibuya S, Ohki Y, Oouchida Y, Izumi SI. Development of VR platform for cloud-based neurorehabilitation and its application to research on sense of agency and ownership. Adv Robot. 2017;31(1–2):97–106.
    1. Soler MD, Kumru H, Pelayo R, Vidal J, Tormos JM, Fregni F, et al. Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spinal cord injury. Brain. 2010;133(9):2565–2577.
    1. Klomjai W, Aneksan B, Pheungphrarattanatrai A, Chantanachai T, Choowong N, Bunleukhet S, et al. Effect of single-session dual-tDCS before physical therapy on lower-limb performance in sub-acute stroke patients: a randomized sham-controlled crossover study. Ann Phys Rehabil Med. 2018.
    1. Bajbouj M, Aust S, Spies J, Herrera-Melendez AL, Mayer SV, Peters M, et al. PsychotherapyPlus: augmentation of cognitive behavioral therapy (CBT) with prefrontal transcranial direct current stimulation (tDCS) in major depressive disorder—study design and methodology of a multicenter double-blind randomized placebo-controlled tria. Eur Arch Psychiatry Clin Neurosci. 2018.

Source: PubMed

3
Suscribir